A132382 Lower triangular array T(n,k) generator for group of arrays related to A001147 and A102625.
1, -1, 1, -1, -2, 1, -3, -3, -3, 1, -15, -12, -6, -4, 1, -105, -75, -30, -10, -5, 1, -945, -630, -225, -60, -15, -6, 1, -10395, -6615, -2205, -525, -105, -21, -7, 1, -135135, -83160, -26460, -5880, -1050, -168, -28, -8, 1, -2027025, -1216215, -374220, -79380, -13230, -1890, -252, -36, -9, 1
Offset: 0
Examples
Some group members and associated arrays are (t,m) :: Array :: Asc. Matrix :: Asc. Sequence :: E.g.f. for sequence .............................................................................. (0,1).::.B..::..A132013.::.(1,-1,0,0,0,0,...).....::.s(x).=.1-x (0,1).::.C..::..A094587.::.(0!,1!,2!,3!,...)......::.1./.s(x) (0,1).::.rB.::.~A055137.::.(1,0,-1,-2,-3,-4,...)..::.exp(x).*.s(x) (0,1).::.rC.::....-.....::..A000522...............::.exp(x)./.s(x) (0,1).::.aB.::....-.....::.(1,-2,3,-4,5,-6,...)...::.exp(-x).*.s(x) (0,1).::.aC.::..A008290.::..A000166...............::.exp(-x)./.s(x) .............................................................................. (0,2).::.B..::..A132014.::.(1,-2,2,0,0,0,0...)....::.s(x).=.(1-x)^2 (0,2).::.C..::..A132159.::.(1!,2!,3!,4!,...)......::..1./.s(x). (0,2).::.rB.::...-......::.(1,-1,-1,1,5,11,19,29,)::.exp(x).*.s(x). (0,2).::.rC.::...-......::..A001339...............::.exp(x)./.s(x). (0,2).::.aB.::...-......::.(-1)^n.A002061(n+1)....::.exp(-x).*.s(x). (0,2).::.aC.::...-......::..A000255...............::.exp(-x)./.s(x). .............................................................................. (1,1).::.B..::..T.......::.(1,-A001147(n-1))......::.s(x).=.(1-2x)^(1/2) (1,1).::.C..::.~A113278.::..A001147...............::.1./.s(x)... (1,1).::.rB.::...-......::..A055142...............::.exp(x).*.s(x). (1,1).::.rC.::...-......::..A084262...............::.exp(x)./.s(x). (1,1).::.aB.::...-......::.(1,-2,2,-4,-4,-56,...).::.exp(-x).*.s(x). (1,1).::.aC.::...-......::..A053871...............::.exp(-x)./.s(x). .............................................................................. (2,1).::.B..::...-......::.(1,-A001813)...........::.s=[1+(1-4x)^(1/2)]/2.... (2,1).::.C..::...-......::..A001761...............::.1./.s(x).. (2,1).::.rB.::...-......::.(1,0,-3,-20,-183,...)..::.exp(x).*.s(x).. (2,1).::.rC.::...-......::.(1,2,7,46,485,...).....::.exp(x)./.s(x). (2,1).::.aB.::...-......::.(1,-2,1,-10,-79,...)...::.exp(-x).*.s(x). (2,1).::.aC.::...-......::.(1,0,3,20,237,...).....::.exp(-x)./.s(x) .............................................................................. (1,2).::.B..::.~A134082.::.(1,-2,0,0,0,0,...).....::.s(x).=.1.-.2x (1,2).::.C..::....-.....::..A000165...............::.1./.s(x).. (1,2).::.rB.::....-.....::.(1,-1,-3,-5,-7,-9,...).::.exp(x).*.s(x). (1,2).::.rC.::....-.....::..A010844...............::.exp(x)./.s(x).. (1,2).::.aB.::....-.....::.(1,-3,5,-7,9,-11,...)..::.exp(-x).*.s(x). (1,2).::.aC.::....-.....::..A000354...............::.exp(-x)./.s(x). .............................................................................. (The tilde indicates the match is not exact--specifically, there are differences in signs from the true matrices.) Note the row sums correspond to binomial transforms of s(x) and the alternating row sums, to inverse binomial transforms, or, finite differences. Some additional examples: C(1,2)*B(0,1) = B(1,-2)*C(0,-1) = [ binomial(n,k)*A002866(n-k) ] with asc. e.g.f. (1-x) / (1-2x). B(1,2)*C(0,1) = C(1,-2)*B(0,-1) = 2I - A094587 with asc. e.g.f. (1-2x) / (1-x).
Formula
[G.f. for TB(n,k,t)] = GTB(u,x,t) = exp(u*x) * { 1 + [ (1 - 2t*x)^(1/2) - 1 ] / t } = exp[(u+Pb(.,t))*x] where TB(n,k,t) = (D_x)^n (D_u)^k /k! GTB(u,x,t) eval. at u=x=0.
[G.f. for TC(n,k,t)] = GTC(u,x,t) = exp(u*x) / { 1 + [ (1 - 2t*x)^(1/2) - 1 ] / t } = exp[(u+Pc(.,t))*x] where TC(n,k,t) = (D_x)^n (D_u)^k /k! GTC(u,x,t) eval. at u=x=0.
[E.g.f. for TB(n,k,t)] = I_o[2*(u*x)^(1/2)] * { 1 + [ (1 - 2t*x)^(1/2) - 1 ] / t } and
[E.g.f. for TC(n,k,t)] = I_o[2*(u*x)^(1/2)] / { 1 + [ (1 - 2t*x)^(1/2) - 1 ] / t }
where I_o is the zeroth modified Bessel function of the first kind, i.e.,
I_o[2*(u*x)^(1/2)] = Sum_{j>=0} (u^j/j!) * (x^j/j!).
So [e.g.f. for TB(n,k)] = I_o[2*(u*x)^(1/2)] * (1 - 2x)^(1/2).
Extensions
More terms from Tom Copeland, Dec 05 2007
Comments