cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A132427 Triangle, read by rows of 2n+1 terms, where T(n,k) = T(n,k-1) + T(n-1,k-2) for n>0, 10 and T(0,0)=1.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 3, 4, 6, 6, 6, 8, 10, 13, 17, 23, 23, 23, 29, 35, 43, 53, 66, 83, 106, 106, 106, 129, 152, 181, 216, 259, 312, 378, 461, 567, 567, 567, 673, 779, 908, 1060, 1241, 1457, 1716, 2028, 2406, 2867, 3434, 3434, 3434, 4001, 4568, 5241, 6020, 6928, 7988
Offset: 0

Views

Author

Paul D. Hanna, Aug 21 2007

Keywords

Comments

Column 0 equals (essentially) column 1 and the rightmost border.

Examples

			Triangle begins:
1;
1, 1, 2;
2, 2, 3, 4, 6;
6, 6, 8, 10, 13, 17, 23;
23, 23, 29, 35, 43, 53, 66, 83, 106;
106, 106, 129, 152, 181, 216, 259, 312, 378, 461, 567;
567, 567, 673, 779, 908, 1060, 1241, 1457, 1716, 2028, 2406, 2867, 3434; ...
		

Crossrefs

Cf. A125273; A132428 (central terms).

Programs

  • Mathematica
    t[n_, k_] := t[n, k] = t[n, k-1] + t[n-1, k-2]; t[n_, 0] := t[n, 0] = t[n-1, 2n-2]; t[n_, 1] := t[n, 0]; t[0, 0] = 1; Flatten[ Table[t[n, k], {n, 0, 7}, {k, 0, 2 n}]] (* Jean-François Alcover, Jun 18 2012 *)
  • PARI
    T(n,k)=local(A=[1]);if(2*n
    				

Formula

The g.f. of column 0 (A125273) satisfies: G(x) = 1 + x*G( x/(1-x)^2 ) / (1-x).
The central terms (A132428) are the inverse binomial transform of A125273 (offset 1).
Showing 1-1 of 1 results.