cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132432 Number of different values of i^2+j^2+k^2+l^2+m^2 for i,j,k,l,m in [0,n].

Original entry on oeis.org

1, 6, 18, 38, 66, 99, 147, 201, 262, 332, 411, 498, 601, 702, 819, 946, 1078, 1221, 1375, 1533, 1703, 1882, 2076, 2264, 2479, 2691, 2922, 3159, 3403, 3655, 3924, 4193, 4478, 4770, 5071, 5376, 5705, 6032, 6372, 6719, 7081, 7448, 7828, 8214, 8616, 9017, 9438
Offset: 0

Views

Author

Jonathan Vos Post, Nov 13 2007, Nov 14 2007

Keywords

Examples

			a(3) = 18 because the 18 different sums of 5 squares of integers from 0 to 2 are: {20, 17, 16, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0} by permutations of 2^2 + 2^2 + 2^2 + 2^2 + 2^2 = 20; 2^2 + 2^2 + 2^2 + 2^2 + 1^2 = 17; 2^2 + 2^2 + 2^2 + 2^2 + 0^2 = 16; 2^2 + 2^2 + 2^2 + 1^2 + 1^2 = 14; 2^2 + 2^2 + 2^2 + 1^2 + 0^2 = 13; 2^2 + 2^2 + 2^2 + 0^2 + 0^2 = 12; 2^2 + 2^2 + 1^2 + 1^2 + 1^2 = 11; 2^2 + 2^2 + 1^2 + 1^2 + 0^2 = 10; 2^2 + 2^2 + 1^2 + 0^2 + 0^2 = 9; 2^2 + 2^2 + 0^2 + 0^2 + 0^2 = 2^2 + 1^2 + 1^2 + 1^2 + 1^2 = 8; 2^2 + 1^2 + 1^2 + 1^2 + 0^2 = 7; 2^2 + 1^2 + 1^2 + 0^2 + 0^2 = 6; 2^2 + 1^2 + 0^2 + 0^2 + 0^2 = 1^2 + 1^2 + 1^2 + 1^2 + 1^2 = 5; 2^2 + 0^2 + 0^2 + 0^2 + 0^2 = 1^2 + 1^2 + 1^2 + 1^2 + 0^2 = 4; 1^2 + 1^2 + 1^2 + 0^2 + 0^2 = 3; 1^2 + 1^2 + 0^2 + 0^2 + 0^2 = 2; 1^2 + 0^2 + 0^2 + 0^2 + 0^2 = 1; 0^2 + 0^2 + 0^2 + 0^2 + 0^2 = 0.
		

Crossrefs

Programs

  • Maple
    S:= proc(k,n) option remember;
    if k = 0 or n = 0 then {0} else
    `union`(seq(map(`+`,procname(j,n-1),(k-j)*n^2),j=1..k-1),
    {k*n^2},procname(k,n-1)) fi end proc:
    seq(nops(S(5,n)),n=0..100); # Robert Israel, Jun 28 2018
  • Mathematica
    Table[Length@ Union@Flatten@ Table[i^2 + j^2 + k^2 + l^2 + m^2, {i, 0, n}, {j, i, n}, {k, j, n}, {l, k, n}, {m, l, n}], {n, 0, 49}]

Extensions

Offset corrected by Giovanni Resta, Jun 18 2016