A132452 First primitive GF(2)[X] polynomials of degree n with exactly 5 terms, X^n suppressed.
15, 27, 15, 29, 27, 27, 23, 83, 27, 43, 23, 45, 15, 39, 39, 83, 39, 57, 43, 27, 15, 71, 39, 83, 23, 83, 15, 197, 83, 281, 387, 387, 83, 99, 147, 57, 15, 153, 89, 101, 27, 449, 51, 657, 113, 29, 75, 75, 71, 329, 71, 149, 45, 99, 149, 53, 39, 105, 51, 27, 27, 833, 39, 163, 101, 43, 43, 1545, 29
Offset: 5
Keywords
Examples
a(11)=23, or 10111 in binary, representing the GF(2)[X] polynomial X^4+X^2+X^1+1, because X^11+X^4+X^2+X^1+1 has exactly 5 terms and it is primitive, contrary to X^11+X^3+X^2+X^1+1.
Links
Crossrefs
Extensions
Edited and extended by Max Alekseyev, Feb 06 2010
Comments