cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132462 Number of partitions of n into distinct parts congruent to 0 or 2 modulo 3.

Original entry on oeis.org

1, 0, 1, 1, 0, 2, 1, 1, 3, 2, 2, 5, 2, 4, 7, 4, 7, 10, 6, 11, 14, 9, 17, 19, 14, 25, 26, 21, 36, 35, 31, 50, 47, 45, 69, 63, 64, 93, 84, 89, 125, 111, 124, 165, 147, 169, 216, 194, 227, 281, 254, 303, 363, 332, 400, 466, 432, 523, 595, 559, 680, 756, 721, 876, 956, 926, 1121
Offset: 0

Views

Author

Reinhard Zumkeller, Aug 22 2007

Keywords

Examples

			a(8)=3 because we have 8, 6+2 and 5+3.
		

Crossrefs

Programs

  • Maple
    g:=product((1+x^(3*k))*(1+x^(3*k-1)),k=1..30): gser:=series(g,x=0,100): seq(coeff(gser,x,n),n=0..70); # Emeric Deutsch, Aug 30 2007
  • Mathematica
    nmax = 40; CoefficientList[Series[Product[((1+x^(3*k))*(1+x^(3*k-1))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 24 2015 *)

Formula

G.f.: Product_{k>=1} (1+x^(3*k))*(1+x^(3*k-1)). - Emeric Deutsch, Aug 30 2007
a(n) ~ exp(Pi*sqrt(2*n)/3) / (2^(23/12) * sqrt(3) * n^(3/4)). - Vaclav Kotesovec, Aug 24 2015

Extensions

a(0)=1 prepended by Vaclav Kotesovec, Aug 24 2015