A132462 Number of partitions of n into distinct parts congruent to 0 or 2 modulo 3.
1, 0, 1, 1, 0, 2, 1, 1, 3, 2, 2, 5, 2, 4, 7, 4, 7, 10, 6, 11, 14, 9, 17, 19, 14, 25, 26, 21, 36, 35, 31, 50, 47, 45, 69, 63, 64, 93, 84, 89, 125, 111, 124, 165, 147, 169, 216, 194, 227, 281, 254, 303, 363, 332, 400, 466, 432, 523, 595, 559, 680, 756, 721, 876, 956, 926, 1121
Offset: 0
Keywords
Examples
a(8)=3 because we have 8, 6+2 and 5+3.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..200
Programs
-
Maple
g:=product((1+x^(3*k))*(1+x^(3*k-1)),k=1..30): gser:=series(g,x=0,100): seq(coeff(gser,x,n),n=0..70); # Emeric Deutsch, Aug 30 2007
-
Mathematica
nmax = 40; CoefficientList[Series[Product[((1+x^(3*k))*(1+x^(3*k-1))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 24 2015 *)
Formula
G.f.: Product_{k>=1} (1+x^(3*k))*(1+x^(3*k-1)). - Emeric Deutsch, Aug 30 2007
a(n) ~ exp(Pi*sqrt(2*n)/3) / (2^(23/12) * sqrt(3) * n^(3/4)). - Vaclav Kotesovec, Aug 24 2015
Extensions
a(0)=1 prepended by Vaclav Kotesovec, Aug 24 2015