A132587 Let b(k) be the k-th term of the flattened irregular array where the m-th row contains the positive divisors of m. (b(k) = A027750(k).) Let c(k) be the k-th term of the flattened irregular array where the m-th row contains the positive integers that are <= m and are coprime to m. (c(k) = A038566(k).) Then a(n) = gcd(b(n),c(n)).
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 5, 1, 1, 1, 1, 1, 3, 1, 2, 3, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 2, 1, 4, 1, 1, 1, 2, 3, 2, 1, 6, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 1, 1, 1
Offset: 1
Keywords
Examples
A027750: 1, 1, 2, 1, 3, 1, 2, 4, 1, 5, 1, 2, 3, 6, ... A038566: 1, 1, 1, 2, 1, 3, 1, 2, 3, 4, 1, 5, 1, 2, ... The 14th terms of each list are 6 and 2. So a(14) = gcd(6,2) = 2.
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..10000
- Rémy Sigrist, PARI program for A132587
Programs
-
PARI
See Links section.
Extensions
More terms from Rémy Sigrist, Feb 07 2019