cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A132690 Triangle T, read by rows, where row n+1 of T = row n of T^(-n) with appended '1' for n>=0 with T(0,0)=1.

Original entry on oeis.org

1, 1, 1, -1, 1, 1, 5, -2, 1, 1, -43, 12, -3, 1, 1, 527, -118, 22, -4, 1, 1, -8396, 1605, -250, 35, -5, 1, 1, 164672, -27816, 3810, -455, 51, -6, 1, 1, -3835910, 585046, -72492, 7735, -749, 70, -7, 1, 1, 103464895, -14459138, 1649634, -161336, 14098, -1148, 92, -8, 1, 1
Offset: 0

Views

Author

Paul D. Hanna, Aug 25 2007

Keywords

Examples

			Triangle begins:
1;
1, 1;
-1, 1, 1;
5, -2, 1, 1;
-43, 12, -3, 1, 1;
527, -118, 22, -4, 1, 1;
-8396, 1605, -250, 35, -5, 1, 1;
164672, -27816, 3810, -455, 51, -6, 1, 1;
-3835910, 585046, -72492, 7735, -749, 70, -7, 1, 1;
103464895, -14459138, 1649634, -161336, 14098, -1148, 92, -8, 1, 1; ...
Matrix inverse T^-1 is a signed version of triangle A101479:
1;
-1, 1;
2, -1, 1;
-9, 3, -1, 1;
70, -18, 4, -1, 1;
-795, 170, -30, 5, -1, 1;
11961, -2220, 335, -45, 6, -1, 1; ...
Matrix inverse square T^-2 begins:
1;
-2, 1;
5, -2, 1; <-- row 3 of T
-23, 7, -2, 1;
175, -43, 9, -2, 1; ...
where row 3 of T = row 2 of T^-2 with appended '1'.
Matrix inverse cube T^-3 begins:
1;
-3, 1;
9, -3, 1;
-43, 12, -3, 1; <-- row 4 of T
324, -76, 15, -3, 1; ...
where row 4 of T = row 3 of T^-3 with appended '1'.
Matrix inverse 4th power T^-4 begins:
1;
-4, 1;
14, -4, 1;
-70, 18, -4, 1;
527, -118, 22, -4, 1; <-- row 4 of T
-5624, 1107, -178, 26, -4, 1; ...
where row 5 of T = row 4 of T^-4 with appended '1'.
		

Crossrefs

Programs

  • PARI
    {T(n, k)=local(A=Mat(1), B); for(m=1, n+1, B=matrix(m, m); for(i=1, m, for(j=1, i, if(j==i, B[i, j]=1, B[i, j]=(A^(-(i-2)))[i-1, j]); )); A=B); return( ((A)[n+1, k+1]))}

Formula

The matrix inverse T^-1 equals triangle A101479 (signed).

A132691 Column 0 of triangle A132690.

Original entry on oeis.org

1, 1, -1, 5, -43, 527, -8396, 164672, -3835910, 103464895, -3170985454, 108828369497, -4134333957073, 172223139437835, -7805591781504739, 382374360671653989, -20132511625986242785, 1133765691312312723347, -68002260363248096548050
Offset: 0

Views

Author

Paul D. Hanna, Aug 25 2007

Keywords

Crossrefs

Programs

  • PARI
    {a(n)=local(A=Mat(1), B); for(m=1, n+1, B=matrix(m, m); for(i=1, m, for(j=1, i, if(j==i, B[i, j]=1, B[i, j]=(A^(-(i-2)))[i-1, j]); )); A=B); return( ((A)[n+1,1]))}

A132693 Column 2 of triangle A132690.

Original entry on oeis.org

1, 1, -3, 22, -250, 3810, -72492, 1649634, -43626510, 1313526375, -44332221175, 1657043432088, -67929461003560, 3029864359322346, -146058681728370600, 7566706624571096610, -419220650458638848514, 24733868801871384287055, -1548237182318766914543100
Offset: 0

Views

Author

Paul D. Hanna, Aug 25 2007

Keywords

Comments

Triangle T=A132690 is generated from negative powers of itself such that row n+1 of T = row n of T^(-n) with appended '1' for n>=0 with T(0,0)=1.

Crossrefs

Programs

  • PARI
    {a(n)=local(A=Mat(1), B); for(m=1, n+3, B=matrix(m, m); for(i=1, m, for(j=1, i, if(j==i, B[i, j]=1, B[i, j]=(A^(-(i-2)))[i-1, j]); )); A=B); return( ((A)[n+3,3]))}

A132694 Column 3 of triangle A132690.

Original entry on oeis.org

1, 1, -4, 35, -455, 7735, -161336, 3973212, -112587210, 3603324835, -128433778935, 5042279130343, -216113991649920, 10038333251577820, -502213976534135280, 26920671954736535620, -1539171664433009622090, 93492751831594011076131, -6012423991038631627857900
Offset: 0

Views

Author

Paul D. Hanna, Aug 25 2007

Keywords

Comments

Triangle T=A132690 is generated from negative powers of itself such that row n+1 of T = row n of T^(-n) with appended '1' for n>=0 with T(0,0)=1.

Crossrefs

Programs

  • PARI
    {a(n)=local(A=Mat(1), B); for(m=1, n+4, B=matrix(m, m); for(i=1, m, for(j=1, i, if(j==i, B[i, j]=1, B[i, j]=(A^(-(i-2)))[i-1, j]); )); A=B); return( ((A)[n+4,4]))}
Showing 1-4 of 4 results.