A132710 Infinitesimal generator for a diagonally-shifted Lah matrix, unsigned A105278, related to n! Laguerre(n,-x,1).
0, 2, 0, 0, 6, 0, 0, 0, 12, 0, 0, 0, 0, 20, 0, 0, 0, 0, 0, 30, 0, 0, 0, 0, 0, 0, 42, 0, 0, 0, 0, 0, 0, 0, 56, 0, 0, 0, 0, 0, 0, 0, 0, 72, 0, 0, 0, 0, 0, 0, 0, 0, 0, 90, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 110, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 132, 0
Offset: 0
Links
- G. Hetyei, Meixner polynomials of the second kind and quantum algebras representing su(1,1), arXiv preprint arXiv:0909.4352 [math.QA], 2009, p. 4
- M. Janjic, Some classes of numbers and derivatives, JIS 12 (2009) 09.8.3
Programs
-
Mathematica
Table[PadLeft[{n*(n-1), 0}, n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Apr 30 2014 *)
Formula
Given a polynomial sequence p_n(x) with p_0(x)=1 and the lowering and raising operators L and R defined by L P_n(x) = n * P_(n-1)(x) and R P_n(x) = P_(n+1)(x), the matrix T represents the action of R*L^2*R^2 in the p_n(x) basis. For p_n(x) = x^n, L = D = d/dx and R = x. For p_n(x) = x^n/n!, L = DxD and R = D^(-1). - Tom Copeland, Oct 25 2012
Comments