A132729 Triangle T(n, k) = 2*binomial(n, k) - 3 with T(n, 0) = T(n, n) = 1, read by rows.
1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 5, 9, 5, 1, 1, 7, 17, 17, 7, 1, 1, 9, 27, 37, 27, 9, 1, 1, 11, 39, 67, 67, 39, 11, 1, 1, 13, 53, 109, 137, 109, 53, 13, 1, 1, 15, 69, 165, 249, 249, 165, 69, 15, 1, 1, 17, 87, 237, 417, 501, 417, 237, 87, 17, 1, 1, 19, 107, 327, 657, 921, 921, 657, 327, 107, 19, 1
Offset: 0
Examples
First few rows of the triangle are: 1; 1, 1; 1, 1, 1; 1, 3, 3, 1; 1, 5, 9, 5, 1; 1, 7, 17, 17, 7, 1; 1, 9, 27, 37, 26, 9, 1; 1, 11, 39, 67, 67, 39, 11, 1;
Links
- G. C. Greubel, Rows n = 0..100 of the triangle, flattened
Programs
-
Magma
T:= func< n,k | k eq 0 or k eq n select 1 else 2*Binomial(n,k) - 3 >; [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 13 2021
-
Mathematica
T[n_, k_]:= If[k==0 || k==n, 1, 2*Binomial[n, k] - 3]; Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Feb 13 2021 *)
-
Sage
def T(n,k): return 1 if (k==0 or k==n) else 2*binomial(n,k) - 3 flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 13 2021
Formula
T(n, k) = 2*A132044(n, k) - 1.
From G. C. Greubel, Feb 13 2021: (Start)
T(n, k) = 2*binomial(n, k) - 3 with T(n, 0) = T(n, n) = 1.
Sum_{k=0..n} T(n, k) = 2^(n+1) - 3*n + 1 - 2*[n=0] = A132730(n). (End)
Extensions
More terms added by G. C. Greubel, Feb 13 2021