cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132729 Triangle T(n, k) = 2*binomial(n, k) - 3 with T(n, 0) = T(n, n) = 1, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 5, 9, 5, 1, 1, 7, 17, 17, 7, 1, 1, 9, 27, 37, 27, 9, 1, 1, 11, 39, 67, 67, 39, 11, 1, 1, 13, 53, 109, 137, 109, 53, 13, 1, 1, 15, 69, 165, 249, 249, 165, 69, 15, 1, 1, 17, 87, 237, 417, 501, 417, 237, 87, 17, 1, 1, 19, 107, 327, 657, 921, 921, 657, 327, 107, 19, 1
Offset: 0

Views

Author

Gary W. Adamson, Aug 26 2007

Keywords

Examples

			First few rows of the triangle are:
  1;
  1,  1;
  1,  1,  1;
  1,  3,  3,  1;
  1,  5,  9,  5,  1;
  1,  7, 17, 17,  7,  1;
  1,  9, 27, 37, 26,  9,  1;
  1, 11, 39, 67, 67, 39, 11, 1;
		

Crossrefs

Programs

  • Magma
    T:= func< n,k | k eq 0 or k eq n select 1 else 2*Binomial(n,k) - 3 >;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 13 2021
  • Mathematica
    T[n_, k_]:= If[k==0 || k==n, 1, 2*Binomial[n, k] - 3];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Feb 13 2021 *)
  • Sage
    def T(n,k): return 1 if (k==0 or k==n) else 2*binomial(n,k) - 3
    flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 13 2021
    

Formula

T(n, k) = 2*A132044(n, k) - 1.
From G. C. Greubel, Feb 13 2021: (Start)
T(n, k) = 2*binomial(n, k) - 3 with T(n, 0) = T(n, n) = 1.
Sum_{k=0..n} T(n, k) = 2^(n+1) - 3*n + 1 - 2*[n=0] = A132730(n). (End)

Extensions

More terms added by G. C. Greubel, Feb 13 2021