A132737 Triangle T(n,k) = 2*binomial(n,k) + 1, read by rows.
1, 1, 1, 1, 5, 1, 1, 7, 7, 1, 1, 9, 13, 9, 1, 1, 11, 21, 21, 11, 1, 1, 13, 31, 41, 31, 13, 1, 1, 15, 43, 71, 71, 43, 15, 1, 1, 17, 57, 113, 141, 113, 57, 17, 1, 1, 19, 73, 169, 253, 253, 169, 73, 19, 1, 1, 21, 91, 241, 421, 505, 421, 241, 91, 21, 1, 1, 23, 111, 331, 661, 925, 925, 661, 331, 111, 23, 1
Offset: 0
Examples
First few rows of the triangle are: 1; 1, 1; 1, 5, 1; 1, 7, 7, 1; 1, 9, 13, 9, 1; 1, 11, 21, 21, 11, 1; 1, 13, 31, 41, 31, 13, 1; 1, 15, 43, 71, 71, 43, 15, 1; ...
Links
- G. C. Greubel, Rows n = 0..100 of the triangle, flattened
Crossrefs
Programs
-
Magma
A132737:= func< n,k | k eq 0 or k eq n select 1 else 2*Binomial(n,k) +1 >; [A132737(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Feb 15 2021
-
Mathematica
T[n_, k_]:= If[k==0 || k==n, 1, 2*Binomial[n,k] +1]; Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 15 2021 *)
-
Sage
def A132737(n,k): return 1 if (k==0 or k==n) else 2*binomial(n,k) + 1 flatten([[A132737(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Feb 15 2021
Formula
T(n, k) = 2*A132735(n, k) - 1, an infinite lower triangular matrix.
T(n,0) = T(n,n) = 1; otherwise T(n,k) = 2*C(n,k) + 1. - Franklin T. Adams-Watters, Jul 06 2009
Sum_{k=0..n} T(n, k) = 2^(n+1) + n - 3 + 2*[n=0] = A132738(n). - G. C. Greubel, Feb 15 2021
Extensions
Extended by Franklin T. Adams-Watters, Jul 06 2009