cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132741 Largest divisor of n having the form 2^i*5^j.

Original entry on oeis.org

1, 2, 1, 4, 5, 2, 1, 8, 1, 10, 1, 4, 1, 2, 5, 16, 1, 2, 1, 20, 1, 2, 1, 8, 25, 2, 1, 4, 1, 10, 1, 32, 1, 2, 5, 4, 1, 2, 1, 40, 1, 2, 1, 4, 5, 2, 1, 16, 1, 50, 1, 4, 1, 2, 5, 8, 1, 2, 1, 20, 1, 2, 1, 64, 5, 2, 1, 4, 1, 10, 1, 8, 1, 2, 25, 4, 1, 2, 1, 80, 1, 2, 1, 4, 5, 2, 1, 8, 1, 10, 1, 4, 1, 2, 5, 32, 1, 2
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 27 2007

Keywords

Comments

The range of this sequence, { a(n); n>=0 }, is equal to A003592. - M. F. Hasler, Dec 28 2015

Crossrefs

Cf. A379003 (ordinal transform), A379004 (rgs-transform).
Cf. also A355582.

Programs

  • Haskell
    a132741 = f 2 1 where
       f p y x | r == 0    = f p (y * p) x'
               | otherwise = if p == 2 then f 5 y x else y
               where (x', r) = divMod x p
    -- Reinhard Zumkeller, Nov 19 2015
    
  • Maple
    A132741 := proc(n) local f,a; f := ifactors(n)[2] ; a := 1; for f in ifactors(n)[2] do if op(1,f) =2 then a := a*2^op(2,f) ; elif op(1,f) =5 then a := a*5^op(2,f) ; end if; end do;a; end proc: # R. J. Mathar, Sep 06 2011
  • Mathematica
    a[n_] := SelectFirst[Reverse[Divisors[n]], MatchQ[FactorInteger[#], {{1, 1}} | {{2, }} | {{5, }} | {{2, }, {5, }}]&]; Array[a, 100] (* Jean-François Alcover, Feb 02 2018 *)
    a[n_] := Times @@ ({2, 5}^IntegerExponent[n, {2, 5}]); Array[a, 100] (* Amiram Eldar, Jun 12 2022 *)
  • PARI
    A132741(n)=5^valuation(n,5)<M. F. Hasler, Dec 28 2015

Formula

a(n) = n / A132740(n).
a(A003592(n)) = A003592(n).
A051626(a(n)) = 0.
A007732(a(n)) = 1.
From R. J. Mathar, Sep 06 2011: (Start)
Multiplicative with a(2^e)=2^e, a(5^e)=5^e and a(p^e)=1 for p=3 or p>=7.
Dirichlet g.f. zeta(s)*(2^s-1)*(5^s-1)/((2^s-2)*(5^s-5)). (End)
a(n) = A006519(n)*A060904(n) = 2^A007814(n)*5^A112765(n). - M. F. Hasler, Dec 28 2015
Sum_{k=1..n} a(k) ~ n*(12*log(n)^2 + (24*gamma + 36*log(2) - 24)*log(n) + 24 - 24*gamma - 36*log(2) + 36*gamma*log(2) + 2*log(2)^2 - 18*log(5) + 18*gamma*log(5) + 27*log(2)*log(5) + 2*log(5)^2 + 18*log(5)*log(n) - 24*gamma_1)/(60*log(2)*log(5)), where gamma is Euler's constant (A001620) and gamma_1 is the first Stieltjes constant (A082633). - Amiram Eldar, Jan 26 2023