cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132745 Row sums of (A008550 formatted as a triangular array).

Original entry on oeis.org

1, 2, 3, 5, 11, 32, 114, 467, 2130, 10642, 57629, 335381, 2082582, 13716502, 95352529, 696790819, 5334094259, 42649956716, 355261078352, 3075741331481, 27620835538407, 256810928552476, 2468108094076860, 24481671811988907, 250296546308500181, 2634309876797453868, 28509045368598994348
Offset: 0

Views

Author

Philippe Deléham, Nov 21 2007

Keywords

Crossrefs

Programs

  • Magma
    A243631:= func< n,k | n eq 0 select 1 else (&+[ Binomial(n,j)^2*k^j*(n-j)/(n*(j+1)): j in [0..n-1]]) >;
    A132745:= func< n | (&+[A243631(k,n-k): k in [0..n]]) >;
    [A132745(n): n in [0..30]]; // G. C. Greubel, Feb 16 2021
  • Mathematica
    Table[Sum[Hypergeometric2F1[1-k, -k, 2, n-k], {k,0,n}], {n,0,30}] (* G. C. Greubel, Feb 16 2021 *)
  • Sage
    def A243631(n,k): return 1 if n==0 else sum( binomial(n,j)^2*k^j*(n-j)/(n*(j+1)) for j in [0..n-1])
    def A132745(n): return sum( A243631(k, n-k) for k in [0..n] )
    [A132745(n) for n in [0..30]] # G. C. Greubel, Feb 16 2021
    

Formula

From G. C. Greubel, Feb 16 2021: (Start)
a(n) = Sum_{k=0..n} Hypergeometric2F1([1-n+k, k-n], [2], k).
a(n) = Sum_{k=0..n} Hypergeometric2F1([1-k, -k], [2], n-k).
a(n) = 1 + Sum_{k=1..n} Sum_{j=0..k-1} binomial(k,j)^2 * ((k-j)*(n-k)^j/(k*(j+1))).
a(n) = 1 + Sum_{k=1..n} Sum_{j=0..k-1} A001263(k, k-j) * (n-k)^j. (End)

Extensions

Terms a(11) onward added by G. C. Greubel, Feb 16 2021