A132751 Triangle T(n, k) = 2/Beta(n-k+1, k) - 1, read by rows.
1, 3, 3, 5, 11, 5, 7, 23, 23, 7, 9, 39, 59, 39, 9, 11, 59, 119, 119, 59, 11, 13, 83, 209, 279, 209, 83, 13, 15, 111, 335, 559, 559, 335, 111, 15, 17, 143, 503, 1007, 1259, 1007, 503, 143, 17, 19, 179, 719, 1679, 2519, 2519, 1679, 719, 179, 19
Offset: 1
Examples
First few rows of the triangle are: 1; 3, 3; 5, 11, 5; 7, 23, 23, 7; 9, 39, 59, 39, 9; 11, 59, 119, 119, 59, 11; 13, 83, 209, 279, 209, 83, 13; 15, 111, 335, 559, 559, 335, 111, 15; ...
Links
- G. C. Greubel, Rows n = 1..100 of the triangle, flattened
Programs
-
Magma
A132751:= func< n,k | 2*Factorial(n)/(Factorial(k-1)*Factorial(n-k)) -1 >; [A132751(n, k): k in [1..n], n in [1..12]]; // G. C. Greubel, Feb 16 2021
-
Mathematica
T[n_, k_]:= 2/Beta[n-k+1, k] - 1; Table[T[n, k], {n,12}, {k,n}]//Flatten (* G. C. Greubel, Feb 16 2021 *)
-
Sage
def A132751(n, k): return 2/beta(n-k+1, k) - 1 flatten([[A132751(n,k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Feb 16 2021
Formula
T(n, k) = 2*A003506(n, k) - 1, an infinite lower triangular matrix.
From G. C. Greubel, Feb 16 2021: (Start)
T(n, k) = 2/Beta(n-k+1, k) - 1.
Sum_{k=1..n} T(n, k) = n*(2^n -1) = A066524(n). (End)