A132795 Triangle of Gely numbers, read by rows.
1, 1, 0, 1, 0, 1, 1, 0, 5, 0, 1, 0, 16, 6, 1, 1, 0, 42, 56, 21, 0, 1, 0, 99, 316, 267, 36, 1, 1, 0, 219, 1408, 2367, 960, 85, 0, 1, 0, 466, 5482, 16578, 14212, 3418, 162, 1, 1, 0, 968, 19624, 99330, 153824, 77440, 11352, 341, 0, 1, 0, 1981, 66496, 534898, 1364848, 1233970, 389104, 36829, 672, 1
Offset: 0
Examples
Triangle starts: 1; 1, 0; 1, 0, 1; 1, 0, 5, 0; 1, 0, 16, 6, 1; 1, 0, 42, 56, 21, 0; ...
References
- Charles O. Gely, Un tableau de conversion des polynomes cyclotomiques cousin des nombres Euleriens, Preprint Univ. Paris 7, 1999.
- Olivier Gérard, Quelques facons originales de compter les permutations, submitted to Knuth07.
- Olivier Gérard and Karol Penson, Set partitions, Multiset permutations and bi-permutations, in preparation.
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, Reading, MA, 1990, p. 269.
Programs
-
PARI
T(n,k)= sum(j=0, k, (-1)^j*binomial(n+1, j)*sum(m=0, n, (k-j)^m)); \\ Michel Marcus, Jun 04 2014
Formula
T(n,k) = sum(j=0..k, (-1)^j*C(n+1,j)*sum(m=0..n, (k-j)^m) ).
Comments