cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132800 Decimal expansion of Sum_{n >= 1} 1/3^prime(n).

Original entry on oeis.org

1, 5, 2, 7, 2, 6, 9, 0, 2, 7, 2, 5, 7, 2, 2, 4, 7, 1, 5, 2, 8, 1, 7, 5, 4, 1, 8, 7, 4, 4, 2, 5, 9, 1, 2, 4, 3, 0, 3, 4, 2, 3, 6, 4, 2, 7, 1, 4, 6, 3, 2, 9, 8, 5, 0, 8, 6, 2, 8, 8, 3, 7, 5, 3, 6, 7, 3, 2, 1, 3, 2, 2, 2, 3, 0, 9, 2, 1, 1, 0, 6, 2, 7, 0, 3, 7, 0, 9, 5, 9, 5, 5, 8, 9, 8, 7, 3, 9
Offset: 0

Views

Author

Cino Hilliard, Nov 17 2007

Keywords

Comments

Equivalently, the real number in (0,1) having the characteristic function of the primes, A010051, as its base-3 expansion. - M. F. Hasler, Jul 04 2017.

Examples

			0.15272690272572247152817541874425912430342364271463298508628837536732...
		

Crossrefs

Cf. A000720, A051006 (analog for base 2), A132797 (analog for base 5), A010051 (characteristic function of the primes), A057901, A132806 (base 4).

Programs

  • Mathematica
    RealDigits[Sum[1/3^Prime[k], {k, 100}], 10, 100][[1]] (* Vincenzo Librandi, Jul 05 2017 *)
  • PARI
    /* Sum of 1/m^p for primes p */ sumnp(n,m) = { local(s=0,a,j); for(x=1,n, s+=1./m^prime(x); ); a=Vec(Str(s)); for(j=3,100, print1(eval(a[j])",") ) }
    
  • PARI
    suminf(n=1,1/3^prime(n)) \\ Then: digits(%\.1^default(realprecision))[1..-3] to remove the last 2 digits. N.B.: Functions sumpos() and sumnum() yield much less accurate results. - M. F. Hasler, Jul 04 2017

Formula

From Amiram Eldar, Aug 11 2020: (Start)
Equals Sum_{k>=1} 1/A057901(k).
Equals 2 * Sum_{k>=1} pi(k)/3^(k+1), where pi(k) = A000720(k). (End)

Extensions

Offset corrected R. J. Mathar, Jan 26 2009
Edited by M. F. Hasler, Jul 04 2017