A132810 Smallest sum of n consecutive odd primes which is a multiple of n.
3, 8, 15, 36, 395, 72, 119, 240, 2349, 300, 539, 276, 923, 714, 435, 496, 629, 702, 2375, 1120, 1995, 1144, 3979, 3192, 3925, 2938, 9531, 1960, 10063, 2670, 3441, 4448, 5907, 6358, 9835, 4464, 5069, 3610, 13533, 4000, 6273, 4410, 21113, 12012, 8325, 8142
Offset: 1
Examples
a(5)=395, associated with A132809(5)=71=prime(20) as the first of the 5 consecutive primes, is the smallest sum of 5 consecutive odd primes which is divisible by n=5.
Links
- Zak Seidov, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
Table[Module[{nn=n,ncop},ncop=Total/@Partition[Prime[Range[2,2500]],nn,1];SelectFirst[ ncop,Mod[#,nn]==0&]],{n,50}] (* Harvey P. Dale, Jan 17 2023 *)
Formula
Let A132809(n)=prime(i). Then a(n)= sum(j=i...i+n-1) prime(j). - R. J. Mathar, Nov 27 2007
Extensions
The example does not match the sequence. Also the offset for all of this bunch of sequences should probably be 1. - N. J. A. Sloane, Sep 13 2007
Edited by R. J. Mathar, Nov 27 2007