cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A132832 Largest integer terms forming a self-convolution square-root of a sequence A132831 such that: A132831(n) <= 2*A132831(n-1) for n>0 with A132831(0)=1.

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 11, 21, 39, 75, 143, 275, 528, 1020, 1971, 3821, 7415, 14420, 28075, 54743, 106858, 208831, 408506, 799864, 1567456, 3074126, 6033392, 11849448, 23286686, 45790393, 90090747, 177341817, 349263347, 688166834, 1356505890
Offset: 0

Views

Author

Paul D. Hanna, Sep 07 2007

Keywords

Crossrefs

Cf. A132831.

A132852 Number of sequences {c(i), i=0..n} that form the initial terms of a self-convolution square of an integer sequence such that 0 < c(n) <= 2*c(n-1) for n>0 with c(0)=1.

Original entry on oeis.org

1, 1, 2, 4, 14, 62, 462, 5380, 105626, 3440686, 196429906, 19603795552, 3496015313038, 1120368106124268, 653253602487886098, 697073727912597623594, 1371575342274982257650434
Offset: 0

Views

Author

Paul D. Hanna, Sep 19 2007, Oct 06 2007

Keywords

Comments

Equals the number of nodes at generation n in the 2-convoluted tree. The minimal path in the 2-convoluted tree is A083952 and the maximal path is A132831. The 2-convoluted tree is defined as follows: tree of all finite sequences {c(k), k=0..n} that form the initial terms of a self-convolution square of some integer sequence such that 0 < c(n) <= 2*c(n-1) for n>0 with a(0)=1.

Examples

			a(n) counts the nodes in generation n of the following tree.
Generations 0..5 of the 2-convoluted tree are as follows;
The path from the root is shown, with child nodes enclosed in [].
GEN.0: [1];
GEN.1: 1->[2];
GEN.2: 1-2->[1,3];
GEN.3:
1-2-1->[2]
1-2-3->[2,4,6];
GEN.4:
1-2-1-2->[2,4]
1-2-3-2->[1,3]
1-2-3-4->[1,3,5,7]
1-2-3-6->[1,3,5,7,9,11];
GEN.5:
1-2-1-2-2->[2,4]
1-2-1-2-4->[2,4,6,8]
1-2-3-2-1->[2]
1-2-3-2-3->[2,4,6]
1-2-3-4-1->[2]
1-2-3-4-3->[2,4,6]
1-2-3-4-5->[2,4,6,8,10]
1-2-3-4-7->[2,4,6,8,10,12,14]
1-2-3-6-1->[2]
1-2-3-6-3->[2,4,6]
1-2-3-6-5->[2,4,6,8,10]
1-2-3-6-7->[2,4,6,8,10,12,14]
1-2-3-6-9->[2,4,6,8,10,12,14,16,18]
1-2-3-6-11->[2,4,6,8,10,12,14,16,18,20,22].
Each path in the tree from the root node forms the initial terms of a self-convolution square of a sequence with integer terms.
		

Crossrefs

Extensions

Extended by Martin Fuller, Sep 24 2007.

A132835 Largest terms a(n) forming a self-convolution cube of an integer sequence (A132836) such that: a(n) <= 3*a(n-1) for n>0 with a(0)=1.

Original entry on oeis.org

1, 3, 9, 25, 75, 225, 674, 2022, 6066, 18196, 54588, 163764, 491291, 1473873, 4421619, 13264856, 39794568, 119383704, 358151111, 1074453333, 3223359999, 9670079995, 29010239985, 87030719955, 261092159865, 783276479595
Offset: 0

Views

Author

Paul D. Hanna, Sep 07 2007

Keywords

Crossrefs

Cf. A132836 (cube-root); A132831 (variant).

Programs

  • PARI
    {a(n)=local(B=[1],R);if(n==0,1,for(k=1,n,t=3*a(k-1);B=concat(B,t); R=Vec(Ser(B)^(1/3))[ #B]; B[ #B]=t-(numerator(R)%3)*(denominator(R)-1)/2 ));B[n+1]}

A132837 Largest terms a(n) forming a self-convolution 4th power of an integer sequence (A132838) such that: a(n) <= 4*a(n-1) for n>0 with a(0)=1.

Original entry on oeis.org

1, 4, 14, 56, 221, 884, 3534, 14136, 56542, 226168, 904672, 3618688, 14474751, 57899004, 231596014, 926384056, 3705536222, 14822144888, 59288579552, 237154318208, 948617272832, 3794469091328, 15177876365312, 60711505461248
Offset: 0

Views

Author

Paul D. Hanna, Sep 10 2007

Keywords

Crossrefs

Cf. A132838 (fourth-root); variants: A132831, A132835, A132839.

Programs

  • PARI
    {a(n)=local(A,t,r=1);A=if(n==0,[1],vector(n,j,a(j-1)));if(n==0,r=1,t=a(n-1); if(denominator(Vec(Ser(concat(A,4*t))^(1/4))[n+1])==1,r=4*t, if(denominator(Vec(Ser(concat(A,4*t-1))^(1/4))[n+1])==1,r=4*t-1, if(denominator(Vec(Ser(concat(A,4*t-2))^(1/4))[n+1])==1,r=4*t-2,r=4*t-3))));r}

A132839 Largest terms a(n) forming a self-convolution 5th power of an integer sequence (A132840) such that: a(n) <= 5*a(n-1) for n>0 with a(0)=1.

Original entry on oeis.org

1, 5, 25, 125, 625, 3121, 15605, 78025, 390125, 1950625, 9753123, 48765615, 243828075, 1219140375, 6095701875, 30478509371, 152392546855, 761962734275, 3809813671375, 19049068356875, 95245341784374, 476226708921870
Offset: 0

Views

Author

Paul D. Hanna, Sep 10 2007

Keywords

Crossrefs

Cf. A132840 (fifth-root); variants: A132831, A132835, A132837.

Programs

  • PARI
    {a(n)=local(A,t,r=1);A=if(n==0,[1],vector(n,j,a(j-1)));if(n==0,r=1,t=a(n-1); if(denominator(Vec(Ser(concat(A,5*t))^(1/5))[n+1])==1,r=5*t, if(denominator(Vec(Ser(concat(A,5*t-1))^(1/5))[n+1])==1,r=5*t-1, if(denominator(Vec(Ser(concat(A,5*t-2))^(1/5))[n+1])==1,r=5*t-2, if(denominator(Vec(Ser(concat(A,5*t-3))^(1/5))[n+1])==1,r=5*t-3,r=5*t-4)))));r}

A132836 Largest integer terms forming a self-convolution cube-root of a sequence (A132835) such that: A132835(n) <= 3*A132835(n-1) for n>0 with A132835(0)=1.

Original entry on oeis.org

1, 1, 2, 4, 11, 29, 77, 211, 582, 1618, 4539, 12805, 36306, 103400, 295576, 847661, 2437880, 7028919, 20310976, 58808175, 170577566, 495574655, 1441899589, 4200913967, 12254244406, 35786588014, 104618152761, 306135037294
Offset: 0

Views

Author

Paul D. Hanna, Sep 07 2007

Keywords

Crossrefs

Cf. A132836 (cube-root); A132831 (variant).

A132833 Largest terms a(n) forming a self-convolution of an integer sequence (A132834) such that: a(n) <= 3*a(n-1) for n>0 with a(0)=1.

Original entry on oeis.org

1, 2, 5, 14, 42, 126, 377, 1130, 3390, 10170, 30509, 91526, 274577, 823730, 2471190, 7413570, 22240710, 66722130, 200166390, 600499170, 1801497510, 5404492530, 16213477590, 48640432770, 145921298310, 437763894930, 1313291684789
Offset: 0

Views

Author

Paul D. Hanna, Sep 07 2007

Keywords

Crossrefs

Cf. A132834 (square-root); A132831 (variant).

Programs

  • PARI
    {a(n)=local(B=[1]);if(n==0,1,for(k=1,n,t=3*a(k-1);B=concat(B,t); B[ #B]=t+1-denominator(Vec(Ser(B)^(1/2))[ #B]) ));B[n+1]}
Showing 1-7 of 7 results.