A132861 Smallest number at distance 3n from nearest prime (variant 2).
2, 26, 53, 532, 211, 1342, 2179, 15704, 16033, 31424, 24281, 31430, 31433, 155960, 58831, 360698, 206699, 370312, 370315, 492170, 1357261, 1357264, 1357267, 2010802, 2010805, 4652428, 12485141, 17051788, 17051791, 17051794, 11117213, 20831416, 10938023, 20831422
Offset: 0
Keywords
Links
- Michael S. Branicky, Table of n, a(n) for n = 0..76
- Michael S. Branicky, Python program
Programs
-
Maple
A051700 := proc(m) if m <= 2 then op(m+1,[2,1,1]) ; else min(nextprime(m)-m,m-prevprime(m)) ; fi ; end: a := proc(n) local m ; if n = 0 then RETURN(2); else for m from 0 do if A051700(m) = 3 * n then RETURN(m) ; fi ; od: fi ; end: seq(a(n),n=0..18);
-
Python
# see link for faster program from sympy import prevprime, nextprime def A051700(n): return [2, 1, 1][n] if n < 3 else min(n-prevprime(n), nextprime(n)-n) def a(n): if n == 0: return 2 m = 0 while A051700(m) != 3*n: m += 1 return m print([a(n) for n in range(13)]) # Michael S. Branicky, Feb 26 2021
Formula
a(n) = min {m : A051700(m) = 3n} for n > 0.
a(n) = A051652(3*n). [From R. J. Mathar, Jul 22 2009]
Extensions
7 more terms from R. J. Mathar, Jul 22 2009
4 more terms from R. J. Mathar, Aug 21 2018
a(30) and beyond and edits from Michael S. Branicky, Feb 26 2021
Comments