A132881 a(n) is the number of isolated divisors of n.
1, 0, 2, 1, 2, 1, 2, 2, 3, 2, 2, 2, 2, 2, 4, 3, 2, 3, 2, 2, 4, 2, 2, 4, 3, 2, 4, 4, 2, 3, 2, 4, 4, 2, 4, 5, 2, 2, 4, 4, 2, 3, 2, 4, 6, 2, 2, 6, 3, 4, 4, 4, 2, 5, 4, 4, 4, 2, 2, 6, 2, 2, 6, 5, 4, 5, 2, 4, 4, 6, 2, 6, 2, 2, 6, 4, 4, 5, 2, 6, 5, 2, 2, 6, 4, 2, 4, 6, 2, 5, 4, 4, 4, 2, 4, 8, 2, 4, 6, 5, 2, 5, 2, 6, 8
Offset: 1
Keywords
Examples
The positive divisors of 56 are 1,2,4,7,8,14,28,56. Of these, 1 and 2 are adjacent and 7 and 8 are adjacent. The isolated divisors are therefore 4,14,28,56. There are 4 of these, so a(56) = 4.
Links
- Ray Chandler, Table of n, a(n) for n=1..10000
Programs
-
Maple
with(numtheory): a:=proc(n) local div, ISO, i: div:=divisors(n): ISO:={}: for i to tau(n) do if member(div[i]-1, div)=false and member(div[i]+1, div)=false then ISO:=`union`(ISO,{div[i]}) end if end do end proc; 1, 0, seq(nops(a(j)), j=3..105); # Emeric Deutsch, Oct 02 2007
-
Mathematica
Table[Length@Select[Divisors[n],(#==1||Mod[n,#-1]>0)&&Mod[n,#+1]>0&],{n,1,200}] (* Olivier Gérard Sep 22 2007 *) id[n_]:=DivisorSigma[0,n]-Length[Union[Flatten[Select[Partition[Divisors[ n],2,1],#[[2]]-#[[1]]==1&]]]]; Array[id,110] (* Harvey P. Dale, Jun 04 2018 *)
Extensions
More terms from Olivier Gérard, Sep 22 2007
Comments