cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132885 Triangle read by rows: T(n,k) is the number of paths in the right half-plane from (0,0) to (n,0), consisting of steps U=(1,1), D=(1,-1), h=(1,0) and H=(2,0), having k H=(2,0) steps (0 <= k <= floor(n/2)).

Original entry on oeis.org

1, 1, 3, 1, 7, 2, 19, 9, 1, 51, 28, 3, 141, 95, 18, 1, 393, 306, 70, 4, 1107, 987, 285, 30, 1, 3139, 3144, 1071, 140, 5, 8953, 9963, 3948, 665, 45, 1, 25653, 31390, 14148, 2856, 245, 6, 73789, 98483, 49815, 11844, 1330, 63, 1, 212941, 307836, 172645, 47160
Offset: 0

Views

Author

Emeric Deutsch, Sep 03 2007

Keywords

Comments

Row n has 1+floor(n/2) terms. T(n,0)=A002426(n) (the central trinomial coefficients). T(n,1)=A109188(n-1). Row sums yield A059345. See A132280 for the same statistic on paths restricted to the first quadrant.

Examples

			T(4,1)=9 because we have hhH, hHh, Hhh, HUD, UDH, UHD, HDU, DUH and DHU.
Triangle starts:
                     1;
                     1;
                 3,      1;
                 7,      2;
            19,      9,      1;
            51,     28,      3;
       141,     95,     18,      1;
       393,    306,     70,      4;
  1107,    987,    285,     30,      1;
  3139,   3144,   1071,    140,      5;
		

Crossrefs

Columns k=0..3 give A002426, A109188(n-1), A373651(n-4), A375260(n-6).
Row sums gives A059345.
Cf. A132280.

Programs

  • Maple
    G:=1/sqrt((1+z-t*z^2)*(1-3*z-t*z^2)): Gser:=simplify(series(G,z=0,18)): for n from 0 to 13 do P[n]:=sort(coeff(Gser,z,n)) end do: for n from 0 to 13 do seq(coeff(P[n],t,j),j=0..floor((1/2)*n)) end do; # yields sequence in triangular form
    A132885 := (n,k) -> binomial(n-k,k)*hypergeom([k-n/2,k-n/2+1/2], [1], 4): seq(print(seq(round(evalf(A132885(n,k))),k=0..iquo(n,2))),n=0..9); # Peter Luschny, Sep 18 2014
  • Mathematica
    T[n_, k_] := Binomial[n - k, k]*Hypergeometric2F1[k - n/2, k - n/2 + 1/2, 1, 4]; Table[T[n, k], {n,0,10}, {k, 0, Floor[n/2]}] // Flatten  (* G. C. Greubel, Mar 01 2017 *)

Formula

G.f.: 1/sqrt((1+z-t*z^2)*(1-3*z-t*z^2)).
T(n,k) = C(n-k,k)*hypergeom([k-n/2,k-n/2+1/2], [1], 4). - Peter Luschny, Sep 18 2014