cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132892 Square array T(m,n) read by antidiagonals; T(m,n) is the number of equivalence classes in the set of sequences of n nonnegative integers that sum to m, generated by the equivalence relation defined in the following manner: we write a sequence in the form a[1]0a[2]0...0a[p], where each a[i] is a (possibly empty) sequence of positive integers; two sequences in this form, a[1]0a[2]0...0a[p] and b[1]0b[2]0...0b[q] are said to be equivalent if p=q and b[1],b[2],...,b[q] is a cyclic permutation of a[1],a[2],...a[p].

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 5, 3, 1, 1, 5, 9, 7, 4, 1, 1, 6, 13, 14, 10, 4, 1, 1, 7, 19, 25, 22, 12, 5, 1, 1, 8, 25, 41, 42, 30, 15, 5, 1, 1, 9, 33, 63, 79, 66, 43, 19, 6, 1, 1, 10, 41, 92, 131, 132, 99, 55, 22, 6, 1, 1, 11, 51, 129, 213, 245, 217, 143, 73, 26, 7, 1, 1, 12, 61, 175, 325, 428, 429, 335, 201, 91, 31, 7, 1
Offset: 1

Views

Author

Emeric Deutsch and Ira M. Gessel, Oct 02 2007

Keywords

Comments

T(n,n) = A000108(n) (the Catalan numbers; see R. P. Stanley, Catalan addendum, problem starting "Equivalence classes of the equivalence relation ..."). T(m,m+1) = A007595(m+1); T(m,m+2) = A003441(m+1); T(m,m+3) = A003444(m+3); T(n+2,n) = A001453(n+1) (Catalan numbers - 1); T(m,1)=1; T(m,2)=m; T(m,3) = A080827(m) = A099392(m+1); T(m,4) = A004006(m).

Examples

			T(2,4) = 3 because we have {2000, 0200, 0020, 0002}, {1100, 0110, 0011} and {1010, 0101, 1001}.
T(4,2) = 4 because we have {40, 04}, {31}, {13} and {22}.
The square array starts:
  1....1.....1.....1......1.....1.....1...
  1....2.....3.....3......4.....4.....5...
  1....3.....5.....7.....10....12....15...
  1....4.....9....14.....22....30....43...
  1....5....13....25.....42....66....99...
		

Crossrefs

Programs

  • Maple
    with(numtheory): T:=proc(m,n) local r, div, N: r:=igcd(m,n+1): div:=divisors(r): N:=nops(div): (sum(phi(div[j])*(binomial((m+n+1)/div[j]-1,(n+1)/div[j]-1) -binomial(m/div[j]-1,(n+1)/div[j]-1)),j=1..N))/(n+1) end proc: for m to 12 do seq(T(m, n),n=1..12) end do; # yields the upper left 12 by 12 block of the infinite matrix T(m,n)
    # second Maple program:
    T:= proc(m, n) uses numtheory; (C-> add(phi(d)*(C((m+n+1)/d-1, (n+1)/d-1)
          -C(m/d-1, (n+1)/d-1))/(n+1), d=divisors(igcd(m, n+1))))(binomial)
        end:
    seq(seq(T(1+d-n, n), n=1..d), d=1..14);  # Alois P. Heinz, Jan 28 2025
  • Mathematica
    T[m_, n_] := Module[{r, div, N}, r = GCD[m, n + 1]; div = Divisors[r]; N = Length[div]; (Sum[EulerPhi[div[[j]]]*(Binomial[(m + n + 1)/div[[j]] - 1, (n + 1)/div[[j]] - 1] - Binomial[m/div[[j]] - 1, (n + 1)/div[[j]] - 1]), {j, 1, N}])/(n + 1)];
    Table[T[m - n + 1, n], {m, 1, 13}, {n, 1, m}] // Flatten (* Jean-François Alcover, Sep 01 2024, after Maple program *)

Formula

T(m,n) = Sum_{d | gcd(m,n+1)} phi(d)*(C((m+n+1)/d-1, (n+1)/d-1) - C(m/d-1, (n+1)/d-1))/(n+1). [corrected by Jason Yuen, Jan 28 2025]