cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132893 Triangle read by rows: T(n,k) is the number of paths of length n with steps U=(1,1), D=(1,-1) and H=(1,0), starting at (0,0), staying weakly above the x-axis (i.e., left factors of Motzkin paths) and having k peaks (i.e., UDs), 0 <= k <= floor(n/2).

Original entry on oeis.org

1, 2, 4, 1, 9, 4, 21, 13, 1, 50, 40, 6, 121, 118, 27, 1, 296, 340, 106, 8, 730, 965, 381, 46, 1, 1812, 2708, 1296, 220, 10, 4521, 7535, 4241, 935, 70, 1, 11328, 20828, 13482, 3676, 395, 12, 28485, 57266, 41916, 13658, 1940, 99, 1
Offset: 0

Views

Author

Emeric Deutsch, Oct 08 2007

Keywords

Comments

Row n has 1 + floor(n/2) terms.
Row sums yield A005773.

Examples

			T(3,1)=4 because we have HUD, UDH, UDU and UUD.
Triangle starts:
    1;
    2;
    4,   1;
    9,   4;
   21,  13,   1;
   50,  40,   6;
  121, 118,  27,   1;
		

Crossrefs

Programs

  • Maple
    G:=((-1+3*z-z^2+t*z^2+sqrt((1+z+z^2-t*z^2)*(1-3*z+z^2-t*z^2)))*1/2)/(z*(1-3*z+z^2-t*z^2)): Gser:=simplify(series(G,z=0,15)): for n from 0 to 12 do P[n]:=sort(coeff(Gser,z,n)) end do: for n from 0 to 12 do seq(coeff(P[n],t,j), j=0..floor((1/2)*n)) end do; # yields sequence in triangular form
    # second Maple program:
    b:= proc(x, y, t) option remember; expand(`if`(y<0, 0,
         `if`(x=0, 1, b(x-1, y, 1)+b(x-1, y-1, 1)*t+b(x-1, y+1, z))))
        end:
    T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(n, 0, 1)):
    seq(T(n), n=0..15);  # Alois P. Heinz, Feb 01 2019
  • Mathematica
    b[x_, y_, t_] := b[x, y, t] = Expand[If[y < 0, 0, If[x == 0, 1, b[x - 1, y, 1] + b[x - 1, y - 1, 1]*t + b[x - 1, y + 1, z]]]];
    T[n_] := Function[p, Table[Coefficient[p, z, i], {i, 0, Exponent[p, z]}]] @ b[n, 0, 1];
    T /@ Range[0, 15] // Flatten (* Jean-François Alcover, Oct 06 2019, after Alois P. Heinz *)

Formula

T(n,0) = A091964(n).
Sum_{k=0..floor(n/2)} k*T(n,k) = A132894(n-1).
G.f.: G = G(t,z) satisfies z(1 - 3z + z^2 - tz^2)G^2 + (1 - 3z + z^2 - tz^2)G - 1 = 0 (see the Maple program for the explicit expression of G).