A132896 Triangle read by rows: T(n,k)=number of prime divisors of C(n,k), counted with multiplicity (0<=k<=n).
0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 2, 2, 2, 0, 0, 1, 2, 2, 1, 0, 0, 2, 2, 3, 2, 2, 0, 0, 1, 2, 2, 2, 2, 1, 0, 0, 3, 3, 4, 3, 4, 3, 3, 0, 0, 2, 4, 4, 4, 4, 4, 4, 2, 0, 0, 2, 3, 5, 4, 5, 4, 5, 3, 2, 0, 0, 1, 2, 3, 4, 4, 4, 4, 3, 2, 1, 0, 0, 3, 3, 4, 4, 6, 5, 6, 4, 4, 3, 3, 0
Offset: 0
Examples
T(8,3)=4 because C(8,3)=56=2*2*2*7. Triangle begins: 0; 0,0; 0,1,0; 0,1,1,0; 0,2,2,2,0; 0,1,2,2,1,0;
Links
- T. D. Noe, Rows n=0..100 of triangle, flattened
Programs
-
Maple
with(numtheory): T:=proc(n,k) if k <= n then bigomega(binomial(n,k)) else x end if end proc: for n from 0 to 12 do seq(T(n,k),k=0..n) end do; # yields sequence in triangular form