A132964 Convolution triangle of A006190.
1, 3, 1, 10, 6, 1, 33, 29, 9, 1, 109, 126, 57, 12, 1, 360, 516, 306, 94, 15, 1, 1189, 2034, 1491, 600, 140, 18, 1, 3927, 7807, 6813, 3385, 1035, 195, 21, 1, 12970, 29382, 29737, 17568, 6630, 1638, 259, 24, 1, 42837, 108923, 125406, 85826, 38493, 11739, 2436, 332, 27, 1
Offset: 0
Examples
Triangle begins: 1; 3, 1; 10, 6, 1; 33, 29, 9, 1; 109, 126, 57, 12, 1; 360, 516, 306, 94, 15, 1; 1189, 2034, 1491, 600, 140, 18, 1; 3927, 7807, 6813, 3385, 1035, 195, 21, 1; 12970, 29382, 29737, 17568, 6630, 1638, 259, 24, 1; 42837, 108923, 125406, 85826, 38493, 11739, 2436, 332, 27, 1; ...
Links
- Milan Janjić, Words and Linear Recurrences, J. Int. Seq. 21 (2018), #18.1.4.
Formula
Sum_{k=0..n} T(n,k) = A001076(n+1).
Sum_{k=0..floor(n/2)} T(n-k,k) = A007482(n).
T(n,k) = 3*T(n-1,k) + T(n-1,k-1) + T(n-2,k), T(0,0)=1, T(n,k)=0 if k<0 or k>n. - Philippe Deléham, Dec 08 2013
Comments