cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132964 Convolution triangle of A006190.

Original entry on oeis.org

1, 3, 1, 10, 6, 1, 33, 29, 9, 1, 109, 126, 57, 12, 1, 360, 516, 306, 94, 15, 1, 1189, 2034, 1491, 600, 140, 18, 1, 3927, 7807, 6813, 3385, 1035, 195, 21, 1, 12970, 29382, 29737, 17568, 6630, 1638, 259, 24, 1, 42837, 108923, 125406, 85826, 38493, 11739, 2436, 332, 27, 1
Offset: 0

Views

Author

Philippe Deléham, Nov 24 2007

Keywords

Comments

As a Riordan array, this is (1/(1-3x-x^2),x/(1-3x-x^2)).
T(n,k) is the number of words of length n over {0,1,2,3,4} having k letters 4 and avoiding runs of odd length for the letter 0. - Milan Janjic, Jan 14 2017

Examples

			Triangle begins:
      1;
      3,      1;
     10,      6,      1;
     33,     29,      9,     1;
    109,    126,     57,    12,     1;
    360,    516,    306,    94,    15,     1;
   1189,   2034,   1491,   600,   140,    18,    1;
   3927,   7807,   6813,  3385,  1035,   195,   21,   1;
  12970,  29382,  29737, 17568,  6630,  1638,  259,  24,  1;
  42837, 108923, 125406, 85826, 38493, 11739, 2436, 332, 27, 1;
  ...
		

Crossrefs

Formula

Sum_{k=0..n} T(n,k) = A001076(n+1).
Sum_{k=0..floor(n/2)} T(n-k,k) = A007482(n).
T(n,k) = 3*T(n-1,k) + T(n-1,k-1) + T(n-2,k), T(0,0)=1, T(n,k)=0 if k<0 or k>n. - Philippe Deléham, Dec 08 2013