A132969 Expansion of phi(q) * chi(q) in powers of q where phi(), chi() are Ramanujan theta functions.
1, 3, 2, 1, 5, 5, 3, 5, 6, 10, 10, 8, 13, 15, 15, 16, 23, 27, 25, 30, 35, 40, 42, 45, 55, 66, 68, 70, 86, 95, 100, 110, 125, 141, 150, 161, 185, 207, 215, 235, 266, 293, 310, 335, 375, 410, 438, 470, 521, 575, 610, 653, 725, 785, 835, 900, 983, 1070, 1140
Offset: 0
Keywords
Examples
G.f. = 1 + 3*x + 2*x^2 + x^3 + 5*x^4 + 5*x^5 + 3*x^6 + 5*x^7 + 6*x^8 + 10*x^9 + ... G.f. = 1/q + 3*q^23 + 2*q^47 + q^71 + 5*q^95 + 5*q^119 + 3*q^143 + 5*q^167 +...
References
- N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; top of p. 60.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- George E. Andrews, Integer partitions with even parts below odd parts and the mock theta functions, to appear in Annals of Combinatorics, 2017.
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
nmax = 60; CoefficientList[Series[Product[(1 - x^(2*k)) * ( (1 + x^k) / (1 + x^(2*k)) )^3, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 08 2015 *) a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x] QPochhammer[ -x, x^2], {x, 0, n}]; (* Michael Somos, Oct 31 2015 *)
-
PARI
{a(n) = if( n<0, 0, polcoeff( prod(k=1, (n+1)\2, 1 + x^(2*k-1), 1 + x*O(x^n)) * sum(k=1, sqrtint(n), 2 * x^k^2, 1), n))};
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^7 / (eta(x + A) * eta(x^4 + A))^3, n))};
Formula
Expansion of phi(q) + 2 * psi(q) in powers of q where phi(), psi() are Ramanujan 3rd order mock theta functions.
Expansion of q^(1/24) * eta(q^2)^7 / (eta(q) * eta(q^4))^3 in powers of q.
Euler transform of period 4 sequence [ 3, -4, 3, -1, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (2304 t)) = 48^(1/2) (t/i)^(1/2) f(t) where q = exp(2 Pi i t).
G.f.: ( Sum_{k in Z} x^k^2 ) * ( Product_{k>0} (1 + x^(2*k-1)) ).
G.f.: Product_{k>0} (1 - x^(2*k)) * ((1 + x^k) / (1 + x^(2*k)))^3.
a(n) ~ exp(Pi*sqrt(n/6)) / (2*sqrt(n)). - Vaclav Kotesovec, Sep 08 2015
Comments