cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132974 Expansion of psi(-q^3) / psi(-q)^3 in powers of q where psi() is a Ramanujan theta function.

Original entry on oeis.org

1, 3, 6, 12, 24, 45, 78, 132, 222, 363, 576, 900, 1392, 2121, 3180, 4716, 6936, 10098, 14550, 20796, 29520, 41595, 58176, 80856, 111750, 153561, 209820, 285240, 385968, 519840, 696960, 930516, 1237470, 1639314, 2163456, 2845080, 3728904, 4871211
Offset: 0

Views

Author

Michael Somos, Sep 07 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 3*q + 6*q^2 + 12*q^3 + 24*q^4 + 45*q^5 + 78*q^6 + 132*q^7 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ 2 EllipticTheta[ 2, Pi/4, q^(3/2)] / EllipticTheta[ 2, Pi/4, q^(1/2)]^3 , {q, 0, n}]; (* Michael Somos, Sep 26 2017 *)
    nmax=60; CoefficientList[Series[Product[(1-x^(3*k)) * (1+x^(6*k)) / ( (1-x^k)^3 * (1+x^(2*k))^3 ),{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Oct 13 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^3 * eta(x^3 + A) * eta(x^12 + A ) / (eta(x + A)^3 * eta(x^4 + A)^3 * eta(x^6 + A)), n))};

Formula

Expansion of eta(q^2)^3 * eta(q^3) * eta(q^12) / (eta(q)^3 * eta(q^4)^3 * eta(q^6) ) in powers of q.
Euler transform of period 12 sequence [3, 0, 2, 3, 3, 0, 3, 3, 2, 0, 3, 2, ...].
G.f.: Product_{k>0} (1 - x^(3*k)) * (1 + x^(6*k)) / ( (1 - x^k) * (1 + x^(2*k)) )^3.
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = (108)^(-1/2) (t/i)^(-1) g(t) where q = exp(2 Pi i t) and g(t) is the g.f. for A133637.
A132979(n) = (-1)^n * a(n). Convolution inverse of A132973.
a(n) ~ exp(2*Pi*sqrt(n/3)) / (2 * 3^(5/4) * n^(5/4)). - Vaclav Kotesovec, Oct 13 2015