A132974 Expansion of psi(-q^3) / psi(-q)^3 in powers of q where psi() is a Ramanujan theta function.
1, 3, 6, 12, 24, 45, 78, 132, 222, 363, 576, 900, 1392, 2121, 3180, 4716, 6936, 10098, 14550, 20796, 29520, 41595, 58176, 80856, 111750, 153561, 209820, 285240, 385968, 519840, 696960, 930516, 1237470, 1639314, 2163456, 2845080, 3728904, 4871211
Offset: 0
Keywords
Examples
G.f. = 1 + 3*q + 6*q^2 + 12*q^3 + 24*q^4 + 45*q^5 + 78*q^6 + 132*q^7 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ 2 EllipticTheta[ 2, Pi/4, q^(3/2)] / EllipticTheta[ 2, Pi/4, q^(1/2)]^3 , {q, 0, n}]; (* Michael Somos, Sep 26 2017 *) nmax=60; CoefficientList[Series[Product[(1-x^(3*k)) * (1+x^(6*k)) / ( (1-x^k)^3 * (1+x^(2*k))^3 ),{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Oct 13 2015 *)
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^3 * eta(x^3 + A) * eta(x^12 + A ) / (eta(x + A)^3 * eta(x^4 + A)^3 * eta(x^6 + A)), n))};
Formula
Expansion of eta(q^2)^3 * eta(q^3) * eta(q^12) / (eta(q)^3 * eta(q^4)^3 * eta(q^6) ) in powers of q.
Euler transform of period 12 sequence [3, 0, 2, 3, 3, 0, 3, 3, 2, 0, 3, 2, ...].
G.f.: Product_{k>0} (1 - x^(3*k)) * (1 + x^(6*k)) / ( (1 - x^k) * (1 + x^(2*k)) )^3.
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = (108)^(-1/2) (t/i)^(-1) g(t) where q = exp(2 Pi i t) and g(t) is the g.f. for A133637.
a(n) ~ exp(2*Pi*sqrt(n/3)) / (2 * 3^(5/4) * n^(5/4)). - Vaclav Kotesovec, Oct 13 2015
Comments