A132977 Expansion of q^(-1/3) * (eta(q^6)^4 / (eta(q) * eta(q^3) * eta(q^4) * eta(q^12)))^2 in powers of q.
1, 2, 5, 12, 26, 50, 92, 168, 295, 496, 818, 1332, 2126, 3324, 5126, 7824, 11793, 17548, 25857, 37788, 54734, 78578, 111968, 158496, 222842, 311224, 432095, 596676, 819504, 1119624, 1522282, 2060448, 2776514, 3725294, 4978142, 6626988, 8789042
Offset: 0
Keywords
Examples
G.f. = 1 + 2*x + 5*x^2 + 12*x^3 + 26*x^4 + 50*x^5 + 92*x^6 + 168*x^7 + ... G.f. = q + 2*q^4 + 5*q^7 + 12*q^10 + 26*q^13 + 50*q^16 + 92*q^19 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
nmax = 40; CoefficientList[Series[Product[((1-x^(6*k))^4 / ( (1-x^k) * (1-x^(3*k)) * (1-x^(4*k)) * (1-x^(12*k)) ))^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 08 2015 *) a[ n_] := SeriesCoefficient[(QPochhammer[ x^6]^4 / (QPochhammer[ x] QPochhammer[ x^3] QPochhammer[ x^4] QPochhammer[ x^12]))^2, {x, 0, n}]; (* Michael Somos, Oct 31 2015 *)
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( ( eta(x^6 + A)^4 / (eta(x + A) * eta(x^3 + A) * eta(x^4 + A) * eta(x^12 + A)))^2, n))};
Formula
Expansion of q^(-2/3) * (chi(q) * chi(q^3))^2 * c(q^2) / (3 * b(q^2)) in powers of q where chi() is a Ramanujan theta function and b(), c() are cubic AGM functions.
Euler transform of period 12 sequence [ 2, 2, 4, 4, 2, -4, 2, 4, 4, 2, 2, 0, ...].
Expansion of (chi^3(q^3) / chi(q))^2 * (psi(-q^3) / psi(-q))^4 in powers of q where chi(), psi() are Ramanujan theta functions.
Expansion of q^(-1/3) * (eta(q^6)^4 / (eta(q) * eta(q^3) * eta(q^4) * eta(q^12)))^2 in powers of q.
G.f.: (Product_{k>0} (1-x^(6*k))^4 / ( (1-x^k) * (1-x^(3*k)) * (1-x^(4*k)) * (1-x^(12*k)) ))^2.
a(n) = A132975(3*n + 1).
a(n) ~ exp(2*Pi*sqrt(n/3)) / (2 * 3^(9/4) * n^(3/4)). - Vaclav Kotesovec, Sep 08 2015
Extensions
Edited by R. J. Mathar and N. J. A. Sloane, Sep 01 2009
Comments