cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132977 Expansion of q^(-1/3) * (eta(q^6)^4 / (eta(q) * eta(q^3) * eta(q^4) * eta(q^12)))^2 in powers of q.

Original entry on oeis.org

1, 2, 5, 12, 26, 50, 92, 168, 295, 496, 818, 1332, 2126, 3324, 5126, 7824, 11793, 17548, 25857, 37788, 54734, 78578, 111968, 158496, 222842, 311224, 432095, 596676, 819504, 1119624, 1522282, 2060448, 2776514, 3725294, 4978142, 6626988, 8789042
Offset: 0

Views

Author

Michael Somos, Sep 07 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*x + 5*x^2 + 12*x^3 + 26*x^4 + 50*x^5 + 92*x^6 + 168*x^7 + ...
G.f. = q + 2*q^4 + 5*q^7 + 12*q^10 + 26*q^13 + 50*q^16 + 92*q^19 + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[((1-x^(6*k))^4 / ( (1-x^k) * (1-x^(3*k)) * (1-x^(4*k)) * (1-x^(12*k)) ))^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 08 2015 *)
    a[ n_] := SeriesCoefficient[(QPochhammer[ x^6]^4 / (QPochhammer[ x] QPochhammer[ x^3] QPochhammer[ x^4] QPochhammer[ x^12]))^2, {x, 0, n}]; (* Michael Somos, Oct 31 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( ( eta(x^6 + A)^4 / (eta(x + A) * eta(x^3 + A) * eta(x^4 + A) * eta(x^12 + A)))^2, n))};

Formula

Expansion of q^(-2/3) * (chi(q) * chi(q^3))^2 * c(q^2) / (3 * b(q^2)) in powers of q where chi() is a Ramanujan theta function and b(), c() are cubic AGM functions.
Euler transform of period 12 sequence [ 2, 2, 4, 4, 2, -4, 2, 4, 4, 2, 2, 0, ...].
Expansion of (chi^3(q^3) / chi(q))^2 * (psi(-q^3) / psi(-q))^4 in powers of q where chi(), psi() are Ramanujan theta functions.
Expansion of q^(-1/3) * (eta(q^6)^4 / (eta(q) * eta(q^3) * eta(q^4) * eta(q^12)))^2 in powers of q.
G.f. = A112173(x) * A128758(x^2).
G.f.: (Product_{k>0} (1-x^(6*k))^4 / ( (1-x^k) * (1-x^(3*k)) * (1-x^(4*k)) * (1-x^(12*k)) ))^2.
a(n) = A132975(3*n + 1).
a(n) ~ exp(2*Pi*sqrt(n/3)) / (2 * 3^(9/4) * n^(3/4)). - Vaclav Kotesovec, Sep 08 2015

Extensions

Edited by R. J. Mathar and N. J. A. Sloane, Sep 01 2009