A132978 Expansion of q^(-2/3) * (psi(-q^3) / psi(-q)^3) * (c(q^2) / 3) in powers of q where psi() is a Ramanujan theta function and c() is a cubic AGM theta function.
1, 3, 7, 15, 32, 63, 114, 201, 350, 591, 967, 1554, 2468, 3855, 5916, 8970, 13471, 20007, 29384, 42771, 61784, 88530, 125838, 177642, 249230, 347484, 481506, 663549, 909788, 1241127, 1684824, 2276781, 3063657, 4105275, 5478698, 7283709, 9648360, 12735471
Offset: 0
Keywords
Examples
G.f. = 1 + 3*x + 7*x^2 + 15*x^3 + 32*x^4 + 63*x^5 + 114*x^6 + 201*x^7 + ... G.f. = q^2 + 3*q^5 + 7*q^8 + 15*q^11 + 32*q^14 + 63*q^17 + 114*q^20 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ 2^(1/2) x^(-5/8) EllipticTheta[ 3, 0, x^3] QPochhammer[ x, -x] EllipticTheta[ 2, Pi/4, x^(3/2)]^3 / EllipticTheta[ 2, Pi/4, x^(1/2)]^4, {x, 0, n}] // Simplify; nmax=60; CoefficientList[Series[Product[(1+x^(3*k))^3 * (1-x^(3*k))^4 * (1+x^(6*k)) / ( (1-x^k)^4 * (1+x^k) * (1+x^(2*k))^3),{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Oct 13 2015 *)
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^3 + A) * eta(x^6 + A)^2 * eta(x^12 + A) / ( eta(x + A) * eta(x^4 + A))^3, n))};
Formula
Expansion of q^(-2/3) * (psi(-q^3) / psi(-q)^3) * (c(q^2) / 3) in powers of q where psi() is a Ramanujan theta function and c() is a cubic AGM theta function.
Expansion of psi(-x^3)^3 * f(-x, x^2) / psi(-x)^4 in powers of x where psi(), f(,) are Ramanujan theta functions.
Expansion of q^(-2/3) * (eta(q^2) * eta(q^6))^2 * eta(q^3) * eta(q^12) / ( eta(q)* eta(q^4) )^3 in powers of q.
Euler transform of period 12 sequence [ 3, 1, 2, 4, 3, -2, 3, 4, 2, 1, 3, 0, ...].
a(n) = A132975(3*n + 2).
a(n) ~ exp(2*Pi*sqrt(n/3)) / (2 * 3^(9/4) * n^(3/4)). - Vaclav Kotesovec, Oct 13 2015
Comments