A133008 The defining property of the sequences {A, B} = {A000028, A000379} is that they are the unique pair of sets complementary with respect to the positive integers such that p(n) = |{x : x, y in A, x < y, xy = n}| = |{x : x, y in B, x < y, xy = n}| for all n >= 1. The present sequence gives the values of p(n).
0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 2, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1
Offset: 1
Keywords
Links
- David W. Wilson, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a133008 n = length [x | x <- takeWhile (< n) a000028_list, n `mod` x == 0, let y = n `div` x, x < y, y `elem` takeWhile (<= n) a000028_list] -- Reinhard Zumkeller, Oct 05 2011