cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A133037 a(n) = A000931(n)^2.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 1, 1, 4, 4, 9, 16, 25, 49, 81, 144, 256, 441, 784, 1369, 2401, 4225, 7396, 12996, 22801, 40000, 70225, 123201, 216225, 379456, 665856, 1168561, 2050624, 3598609, 6315169, 11082241, 19448100, 34128964, 59892121, 105103504, 184443561, 323676081
Offset: 0

Views

Author

Omar E. Pol, Nov 02 2007

Keywords

Comments

a(n+3) is the number of tilings of an n-board (a board with dimensions n X 1) with (1/2,1/2;2)-combs and (1/2,1/2;3)-combs. A (w,g;m)-comb is a tile composed of m pieces of dimensions w X 1 separated horizontally by gaps of width g. - Michael A. Allen, Sep 25 2024

Examples

			a(10)=9 because Padovan(10)=3 and 3^2=9.
		

Crossrefs

Cf. A000290, A001248, A007598. Padovan sequence: A000931.

Programs

  • Mathematica
    a[0] = a[3] = a[5] = a[6] = 1; a[1] = a[2] = a[4] = 0; a[n_Integer] := a[n] = 2*a[n - 2] + 2*a[n - 3] - a[n - 7]; Table[a[i], {i, 0, 40}] (* Olivier Gérard, Jul 05 2011 *)
    Table[RootSum[-1 - # + #^3 &, #^n (5 - 6 # + 4 #^2) &]^2/529, {n, 0,
    40}] (* Eric W. Weisstein, Apr 16 2018 *)
    LinearRecurrence[{1, 1, 1, -1, 1, -1}, {1, 0, 0, 1, 0, 1}, 40] (* Eric W. Weisstein, Apr 16 2018 *)
  • PARI
    Vec(O(x^20)+(1-x-x^2-x^5)/(1-x-x^2-x^3+x^4-x^5+x^6)) \\ Charles R Greathouse IV, Jul 05 2011

Formula

a(n) = A000931(n)^2.
a(n) = a(n-1) + a(n-2) + a(n-3) - a(n-4) + a(n-5) - a(n-6).
G.f.: (x^5+x^2+x-1)/(-x^6+x^5-x^4+x^3+x^2+x-1).
a(n) = a(n-2) + a(n-3) + 2*Sum_{r=8..n} ( A000930(r-8)*a(n+3-r) ) for n >= 3. - Michael A. Allen, Sep 25 2024