cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A133039 a(n) = P(n)^3 - P(n)^2 where P(n) = A000931(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 18, 48, 100, 294, 648, 1584, 3840, 8820, 21168, 49284, 115248, 270400, 628660, 1468548, 3420150, 7960000, 18539400, 43120350, 100328400, 233365440, 542672640, 1262045880, 2934442944, 6822962664, 15863704528, 36881698048, 85746672900, 199347278724, 463445232298
Offset: 0

Views

Author

Omar E. Pol, Nov 02 2007

Keywords

Examples

			a(10)=18 because Padovan(10)=3 and 3^3=27 and 3^2=9 and 27-9=18.
		

Crossrefs

Cf. A000290, A000578, A045991. Padovan sequence: A000931.

Programs

  • Mathematica
    P[0] := 1; P[1] := 0; P[2] := 0; P[n_] := P[n] = P[n - 2] + P[n - 3]; Table[P[n]^3 - P[n]^2, {n, 0, 50}] (* G. C. Greubel, Oct 02 2017 *)
  • PARI
    x='x+O('x^50); concat([0, 0, 0, 0, 0, 0, 0, 0], Vec(2*x^8*(x^7-x^6+2*x^5+x^2-2*x+2)/((x -1)*(x^3-2*x^2+3*x-1)*(x^3-x^2+2*x-1)*(x^3-x-1)*(x^6+3*x^5+5*x^4 +5*x^3 +5*x^2+3*x+1)))) \\ G. C. Greubel, Oct 02 2017

Formula

a(n) = P(n)^3 - P(n)^2 = A000931(n)^3 - A000931(n)^2.
G.f.: 2*x^8*(x^7-x^6+2*x^5+x^2-2*x+2) / ((x-1) * (x^3-2*x^2+3*x-1) * (x^3-x^2+2*x-1) * (x^3-x-1) * (x^6+3*x^5+5*x^4+5*x^3+5*x^2+3*x+1)). - Colin Barker, Sep 18 2013

Extensions

Incorrect initial zero of the sequence deleted by Colin Barker, Sep 18 2013
Added more terms, Joerg Arndt, Sep 18 2013