A133047
Starting from the standard 12 against 12 starting position in checkers, the sequence gives the number of distinct positions that can arise after n moves.
Original entry on oeis.org
1, 7, 49, 216, 805, 2733, 9105, 28123, 85340, 255800, 768155, 2265062, 6588759, 18667410, 51448497, 137051636, 353575584, 878804335, 2113497469, 4908984819, 11049271004, 24062242901, 50742319631
Offset: 0
Jonathan Schaeffer (jonathan(AT)cs.ualberta.ca), Dec 27 2007
A157851
Number of possible Fischer Random Chess games at the end of the n-th ply.
Original entry on oeis.org
960, 18882, 371766, 8224968, 181106056, 4433048830, 107637760217, 2854198413886, 75006431287937
Offset: 0
a(0) = 4 (Bishop) * 4 (Bishop) * 6 (Queen) * 10 (Knights) * 1 (King and Rooks) = 960.
a(1) = 36*18 + 204*19 + 204*19 + 516*20 + 90 + 72 = 18882.
a(2) = 22*18^2 + (162+160+8+6)*19^2 + (454+28+22+20+16)*20^2 + (34+28)*21^2 = 371766.
-
import chess
def A157851(n, b = None): return (b.legal_moves.count() if b else 960) if not n else sum(b.push(m) or A157851(n-1, b)+(not b.pop()) for m in b.legal_moves) if b else sum(A157851(n-1, chess.Board.from_chess960_pos(s)) for s in range(960)) # (For illustration, slow for n > 3.) - M. F. Hasler, Apr 25 2023
a(6) added by Richard Pijl (richard.pijl(AT)telenet.be). -
Johannes W. Meijer, May 29 2010
Showing 1-2 of 2 results.
Comments