cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A133083 A000012 * A133080.

Original entry on oeis.org

1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1
Offset: 1

Views

Author

Gary W. Adamson, Sep 08 2007

Keywords

Comments

Row sums = A032766, congruent to {0,1} (mod 3): (1, 3, 4, 6, 7, 9, 10, ...).

Examples

			First few rows of the triangle:
  1;
  2, 1;
  2, 1, 1;
  2, 1, 2, 1;
  2, 1, 2, 1, 1;
  2, 1, 2, 1, 2, 1;
  ...
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := If[k == n, 1, 1  + (1 - (-1)^k)/2 ]; Table[T[n, k], {n, 1, 10}, {k, 1, n}] (* G. C. Greubel, Oct 21 2017 *)
  • PARI
    for(n=1,10, for(k=1,n, print1(if(k==n, 1, 1 + (1-(-1)^k)/2), ", "))) \\ G. C. Greubel, Oct 21 2017

Formula

A000012 * A133080 as infinite lower triangular matrices.