cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A133087 A133080 * A007318.

Original entry on oeis.org

1, 2, 1, 1, 2, 1, 2, 5, 4, 1, 1, 4, 6, 4, 1, 2, 9, 16, 14, 6, 1, 1, 6, 15, 20, 15, 6, 1, 2, 13, 36, 55, 50, 27, 8, 1, 1, 8, 28, 56, 70, 56, 28, 8, 1, 2, 17, 64, 140, 196, 182, 112, 44, 10, 1
Offset: 0

Views

Author

Gary W. Adamson, Sep 08 2007

Keywords

Comments

Row sums = A084221: (1, 3, 4, 12, 16, 48, 64, 192, ...).
Subtriangle of (0, 2, -3/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 03 2012

Examples

			First few rows of the triangle:
  1;
  2,  1;
  1,  2,  1;
  2,  5,  4,  1;
  1,  4,  6,  4,  1;
  2,  9, 16, 14,  6,  1;
  1,  6, 15, 20, 15,  6,  1;
  2, 13, 36, 55, 50, 27,  8,  1;
  1,  8, 28, 56, 70, 56, 28,  8,  1;
  ...
Triangle (0, 2, -3/2, -1/2, 0, 0, 0, ...) DELTA (1, 0, -1, 0, 0, 0, ...) begins:
  1;
  0,  1;
  0,  2,  1;
  0,  1,  2,  1;
  0,  2,  5,  4,  1;
  0,  1,  4,  6,  4,  1;
  0,  2,  9, 16, 14,  6,  1;
  0,  1,  6, 15, 20, 15,  6,  1;
  0,  2, 13, 36, 55, 50, 27,  8,  1;
  0,  1,  8, 28, 56, 70, 56, 28,  8,  1;
  ...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[CoefficientList[Series[(1 + 2*x + y*x)/(1 - (1 + y)^2*x^2), {x, 0, 10}, {y, 0, 10}], x], y] // Flatten (* G. C. Greubel, Oct 21 2017 *)

Formula

A133080 * A007318 as infinite lower triangular matrices.
G.f.: (1+2*x+y*x)/(1-(1+y)^2*x^2). - Philippe Deléham, Mar 03 2012
T(n,k) = T(n-2,k) + 2*T(n-2,k-1) + T(n-2,k-1), T(0,0) = 1, T(1,0) = 2, T(1,1) = 1. - Philippe Deléham, Mar 03 2012
Sum_{k=0..n} T(n,k)*x^k = A059841(n), A019590(n+1), A000034(n), A084221(n), A133125(n) for x = -2, -1, 0, 1, 2 respectively. - Philippe Deléham, Mar 03 2012