A181245 T(n,k) = Number of n X k binary matrices with no 2 X 2 circuit having pattern 0101 in any orientation.
2, 4, 4, 8, 14, 8, 16, 50, 50, 16, 32, 178, 322, 178, 32, 64, 634, 2066, 2066, 634, 64, 128, 2258, 13262, 23858, 13262, 2258, 128, 256, 8042, 85126, 275690, 275690, 85126, 8042, 256, 512, 28642, 546410, 3185462, 5735478, 3185462, 546410, 28642, 512, 1024
Offset: 1
Examples
All solutions for 2X2 ..0..0....0..0....0..0....0..0....0..1....0..1....0..1....1..0....1..0....1..0 ..0..0....0..1....1..0....1..1....0..0....0..1....1..1....0..0....1..0....1..1 ... ..1..1....1..1....1..1....1..1 ..0..0....0..1....1..0....1..1
Links
- R. H. Hardin, Table of n, a(n) for n=1..480
Formula
Empirical column 1: a(n)=2*a(n-1)
Empirical column 2: a(n)=3*a(n-1)+2*a(n-2)
Empirical column 3: a(n)=6*a(n-1)+3*a(n-2)-2*a(n-3)
Empirical column 4: a(n)=10*a(n-1)+20*a(n-2)-21*a(n-3)-30*a(n-4)+8*a(n-5)
Empirical column 5: a(n)=21*a(n-1)+9*a(n-2)-278*a(n-3)+73*a(n-4)+790*a(n-5)-662*a(n-6)+29*a(n-7)+69*a(n-8)-10*a(n-9)
Empirical column 6: a(n)=36*a(n-1)+120*a(n-2)-2391*a(n-3)-3905*a(n-4)+50702*a(n-5)+27152*a(n-6)-396016*a(n-7)+154999*a(n-8)+751787*a(n-9)-499260*a(n-10)-410368*a(n-11)+355981*a(n-12)+38077*a(n-13)-70276*a(n-14)+6203*a(n-15)+3386*a(n-16)-622*a(n-17)+28*a(n-18)
Empirical column 7: a(n)=77*a(n-1)-429*a(n-2)-16791*a(n-3)+132938*a(n-4)+1140609*a(n-5)-11250708*a(n-6)-21101443*a(n-7)+356560316*a(n-8)-276630106*a(n-9)-3595865197*a(n-10)+5253257444*a(n-11)+16399879057*a(n-12)-30419637636*a(n-13)-37486637674*a(n-14)+87632998667*a(n-15)+40083109062*a(n-16)-140235056122*a(n-17)-7589163210*a(n-18)+128111780723*a(n-19)-23221600421*a(n-20)-65939015129*a(n-21)+21868944788*a(n-22)+18307048178*a(n-23)-8259596531*a(n-24)-2431120428*a(n-25)+1497147381*a(n-26)+85285300*a(n-27)-123174410*a(n-28)+8581030*a(n-29)+3300116*a(n-30)-512304*a(n-31)+18304*a(n-32)
Comments