cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A133129 Number of black/white colorings of a 3 X n rectangle which have no monochromatic 2 by 2 subsquares.

Original entry on oeis.org

1, 8, 50, 322, 2066, 13262, 85126, 546410, 3507314, 22512862, 144506294, 927561722, 5953863490, 38216853518, 245307588134, 1574588362378, 10107019231634, 64875265300670, 416423472774166, 2672952594083738, 17157235452223586, 110129423550044398
Offset: 0

Views

Author

Victor S. Miller, Sep 19 2007

Keywords

Examples

			a(2) = 50 because if the middle row is not monochromatic, the top and bottom rows are unconstrained, contributing 2*4*4. if the middle row is monochromatic, the top and bottom rows can each take on only 3 values contributing 2*3*3.
		

Crossrefs

Column k=3 of A181245.

Formula

G.f.: 1+x*(8+2*x-2*x^2)/(1-6*x-3*x^2+2*x^3). - Colin Barker, Jan 04 2012

Extensions

More terms from Colin Barker, Jan 03 2012
a(0)=1 prepended and g.f. adapted by Alois P. Heinz, Feb 19 2015

A133130 Number of 0/1 colorings of an n X n square for which no 2 by 2 subsquare is monochromatic.

Original entry on oeis.org

1, 2, 14, 322, 23858, 5735478, 4468252414, 11282914491066, 92343922085798834, 2449629600675855540670, 210618917058297166847778158, 58694743562963266347581955456602, 53015873227026172656988353687982082782, 155209215810704933798454506348361943868443334
Offset: 0

Views

Author

Victor S. Miller, Sep 19 2007

Keywords

Comments

For each n we define an undirected labeled graph (with self loops), where the vertices are labeled with strings from {0,1}^n and there is an edge between two vertices exactly when we can form a 2 X n rectangle whose rows are the two labels and the 2 X n rectangle has no monochromatic 2 X 2 subsquares. a(n) is the number of walks of length n in this graph. Thus it is the sum of all of the entries of A^n, where A is the adjacency matrix of the graph.

Examples

			a(2) = 14 because 2 of the 16 unrestricted colorings are monochromatic.
		

Crossrefs

Cf. A055099.
Main diagonal of A181245.

Extensions

a(0)-a(1), a(11)-a(13) from Alois P. Heinz, Feb 18 2015

A181239 Number of n X 4 binary matrices with no 2 X 2 circuit having pattern 0101 in any orientation.

Original entry on oeis.org

16, 178, 2066, 23858, 275690, 3185462, 36806846, 425288998, 4914052362, 56780001474, 656071271338, 7580653428086, 87591560417790, 1012087088416198, 11694280472399626, 135122952690874754, 1561294205914890890
Offset: 1

Views

Author

R. H. Hardin, Oct 10 2010

Keywords

Comments

Column 4 of A181245.

Crossrefs

Cf. A181245.

Formula

Empirical: a(n) = 10*a(n-1) + 20*a(n-2) - 21*a(n-3) - 30*a(n-4) + 8*a(n-5).
Empirical g.f.: 2*x*(8 + 9*x - 17*x^2 - 13*x^3 + 4*x^4) / (1 - 10*x - 20*x^2 + 21*x^3 + 30*x^4 - 8*x^5). - Colin Barker, Mar 26 2018

A181240 Number of nX5 binary matrices with no 2X2 circuit having pattern 0101 in any orientation.

Original entry on oeis.org

32, 634, 13262, 275690, 5735478, 119310334, 2481942354, 51630303190, 1074033301458, 22342450688162, 464776188850718, 9668451712623486, 201126823551119586, 4183916965585685474, 87035437968274038914
Offset: 1

Views

Author

R. H. Hardin Oct 10 2010

Keywords

Comments

Column 5 of A181245

Formula

Empirical: a(n)=21*a(n-1)+9*a(n-2)-278*a(n-3)+73*a(n-4)+790*a(n-5)-662*a(n-6)+29*a(n-7)+69*a(n-8)-10*a(n-9)

A181241 Number of nX6 binary matrices with no 2X2 circuit having pattern 0101 in any orientation.

Original entry on oeis.org

64, 2258, 85126, 3185462, 119310334, 4468252414, 167341334542, 6267120468434, 234710735573170, 8790181730741270, 329202219837957230, 12328994417789802954, 461734746019197769254, 17292486998904958867138
Offset: 1

Views

Author

R. H. Hardin Oct 10 2010

Keywords

Comments

Column 6 of A181245

Formula

Empirical: a(n)=36*a(n-1)+120*a(n-2)-2391*a(n-3)-3905*a(n-4)+50702*a(n-5)+27152*a(n-6)-396016*a(n-7)+154999*a(n-8)+751787*a(n-9)-499260*a(n-10)-410368*a(n-11)+355981*a(n-12)+38077*a(n-13)-70276*a(n-14)+6203*a(n-15)+3386*a(n-16)-622*a(n-17)+28*a(n-18)

A181242 Number of nX7 binary matrices with no 2X2 circuit having pattern 0101 in any orientation.

Original entry on oeis.org

128, 8042, 546410, 36806846, 2481942354, 167341334542, 11282914491066, 760744103230314, 51292751478532550, 3458385370907981754, 233179719922207016438, 15722013576638868003178, 1060048065098345660585310
Offset: 1

Views

Author

R. H. Hardin Oct 10 2010

Keywords

Comments

Column 7 of A181245

Formula

Empirical: a(n)=77*a(n-1)-429*a(n-2)-16791*a(n-3)+132938*a(n-4)+1140609*a(n-5)-11250708*a(n-6)-21101443*a(n-7)+356560316*a(n-8)-276630106*a(n-9)-3595865197*a(n-10)+5253257444*a(n-11)+16399879057*a(n-12)-30419637636*a(n-13)-37486637674*a(n-14)+87632998667*a(n-15)+40083109062*a(n-16)-140235056122*a(n-17)-7589163210*a(n-18)+128111780723*a(n-19)-23221600421*a(n-20)-65939015129*a(n-21)+21868944788*a(n-22)+18307048178*a(n-23)-8259596531*a(n-24)-2431120428*a(n-25)+1497147381*a(n-26)+85285300*a(n-27)-123174410*a(n-28)+8581030*a(n-29)+3300116*a(n-30)-512304*a(n-31)+18304*a(n-32)

A181243 Number of nX8 binary matrices with no 2X2 circuit having pattern 0101 in any orientation.

Original entry on oeis.org

256, 28642, 3507314, 425288998, 51630303190, 6267120468434, 760744103230314, 92343922085798834, 11209291140160525086, 1360654834588676117974, 165164912207734179639646, 20048764401201147437094494
Offset: 1

Views

Author

R. H. Hardin Oct 10 2010

Keywords

Comments

Column 8 of A181245

A181244 Number of nX9 binary matrices with no 2X2 circuit having pattern 0101 in any orientation.

Original entry on oeis.org

512, 102010, 22512862, 4914052362, 1074033301458, 234710735573170, 51292751478532550, 11209291140160525086, 2449629600675855540670, 535331352762077895206878, 116988976006831708160421286
Offset: 1

Views

Author

R. H. Hardin Oct 10 2010

Keywords

Comments

Column 9 of A181245
Showing 1-8 of 8 results.