cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A181245 T(n,k) = Number of n X k binary matrices with no 2 X 2 circuit having pattern 0101 in any orientation.

Original entry on oeis.org

2, 4, 4, 8, 14, 8, 16, 50, 50, 16, 32, 178, 322, 178, 32, 64, 634, 2066, 2066, 634, 64, 128, 2258, 13262, 23858, 13262, 2258, 128, 256, 8042, 85126, 275690, 275690, 85126, 8042, 256, 512, 28642, 546410, 3185462, 5735478, 3185462, 546410, 28642, 512, 1024
Offset: 1

Views

Author

R. H. Hardin, Oct 10 2010

Keywords

Comments

Table starts
....2......4.........8..........16.............32...............64
....4.....14........50.........178............634.............2258
....8.....50.......322........2066..........13262............85126
...16....178......2066.......23858.........275690..........3185462
...32....634.....13262......275690........5735478........119310334
...64...2258.....85126.....3185462......119310334.......4468252414
..128...8042....546410....36806846.....2481942354.....167341334542
..256..28642...3507314...425288998....51630303190....6267120468434
..512.102010..22512862..4914052362..1074033301458..234710735573170
.1024.363314.144506294.56780001474.22342450688162.8790181730741270

Examples

			All solutions for 2X2
..0..0....0..0....0..0....0..0....0..1....0..1....0..1....1..0....1..0....1..0
..0..0....0..1....1..0....1..1....0..0....0..1....1..1....0..0....1..0....1..1
...
..1..1....1..1....1..1....1..1
..0..0....0..1....1..0....1..1
		

Crossrefs

Main diagonal is A133130.
Column 2 is A055099.
Column 3 is A133129.

Formula

Empirical column 1: a(n)=2*a(n-1)
Empirical column 2: a(n)=3*a(n-1)+2*a(n-2)
Empirical column 3: a(n)=6*a(n-1)+3*a(n-2)-2*a(n-3)
Empirical column 4: a(n)=10*a(n-1)+20*a(n-2)-21*a(n-3)-30*a(n-4)+8*a(n-5)
Empirical column 5: a(n)=21*a(n-1)+9*a(n-2)-278*a(n-3)+73*a(n-4)+790*a(n-5)-662*a(n-6)+29*a(n-7)+69*a(n-8)-10*a(n-9)
Empirical column 6: a(n)=36*a(n-1)+120*a(n-2)-2391*a(n-3)-3905*a(n-4)+50702*a(n-5)+27152*a(n-6)-396016*a(n-7)+154999*a(n-8)+751787*a(n-9)-499260*a(n-10)-410368*a(n-11)+355981*a(n-12)+38077*a(n-13)-70276*a(n-14)+6203*a(n-15)+3386*a(n-16)-622*a(n-17)+28*a(n-18)
Empirical column 7: a(n)=77*a(n-1)-429*a(n-2)-16791*a(n-3)+132938*a(n-4)+1140609*a(n-5)-11250708*a(n-6)-21101443*a(n-7)+356560316*a(n-8)-276630106*a(n-9)-3595865197*a(n-10)+5253257444*a(n-11)+16399879057*a(n-12)-30419637636*a(n-13)-37486637674*a(n-14)+87632998667*a(n-15)+40083109062*a(n-16)-140235056122*a(n-17)-7589163210*a(n-18)+128111780723*a(n-19)-23221600421*a(n-20)-65939015129*a(n-21)+21868944788*a(n-22)+18307048178*a(n-23)-8259596531*a(n-24)-2431120428*a(n-25)+1497147381*a(n-26)+85285300*a(n-27)-123174410*a(n-28)+8581030*a(n-29)+3300116*a(n-30)-512304*a(n-31)+18304*a(n-32)

A133357 Number of 2-colorings of a 3 X n rectangle for which no subsquare has monochromatic corners.

Original entry on oeis.org

1, 8, 50, 276, 1498, 8352, 46730, 260204, 1447890, 8062968, 44907298, 250082756, 1392637914, 7755351712, 43188407610, 240509081468, 1339353796226, 7458635202952, 41535888495186, 231306378487028, 1288106280145770, 7173247100732400, 39946606186601514
Offset: 0

Views

Author

Victor S. Miller, Dec 21 2007

Keywords

Comments

Figures obtained via clever exhaustion, using Gray Codes.

Examples

			a(1) = 8, because there are no conditions.
a(2) = 50 because if the middle row is not monochromatic, the top and bottom rows are unconstrained, contributing 2*4*4.  If the middle row is monochromatic, the top and bottom rows can each take on only 3 values contributing 2*3*3.
		

References

  • J. Solymosi, "A Note on a Question of Erdos and Graham", Combinatorics, Probability and Computing, Volume 13, Issue 2 (March 2004) 263 - 267.

Crossrefs

Column k=3 of A255256.

Programs

  • Maple
    gf:= -(x+1)*(8*x^7-12*x^6-2*x^5-16*x^4-30*x^3-15*x^2-4*x-1)/
         (24*x^8-4*x^7-46*x^6-66*x^5-74*x^4-25*x^3-7*x^2-3*x+1):
    a:= n-> coeff(series(gf, x, n+1), x, n):
    seq(a(n), n=0..30);  # Alois P. Heinz, Feb 18 2015

Formula

G.f.: -(x+1)*(8*x^7-12*x^6-2*x^5-16*x^4-30*x^3-15*x^2-4*x-1) / (24*x^8-4*x^7-46*x^6-66*x^5-74*x^4-25*x^3-7*x^2-3*x+1). - Alois P. Heinz, Feb 18 2015

Extensions

a(0), a(8)-a(22) from Alois P. Heinz, Feb 18 2015
Showing 1-2 of 2 results.