cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A255256 Number A(n,k) of 2-colorings of a k X n rectangle such that no nontrivial subsquare has monochromatic corners; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 8, 14, 8, 1, 1, 16, 50, 50, 16, 1, 1, 32, 178, 276, 178, 32, 1, 1, 64, 634, 1498, 1498, 634, 64, 1, 1, 128, 2258, 8352, 10980, 8352, 2258, 128, 1, 1, 256, 8042, 46730, 85138, 85138, 46730, 8042, 256, 1, 1, 512, 28642, 260204, 655090, 781712, 655090, 260204, 28642, 512, 1
Offset: 0

Views

Author

Alois P. Heinz, Feb 19 2015

Keywords

Examples

			A(2,2) = 2^(2*2) - 2 = 14 because there are exactly two of sixteen 2-colorings of the 2 X 2 square resulting in nontrivial subsquares with monochromatic corners.
Square array A(n,k) begins:
  1,  1,    1,     1,      1,       1,        1, ...
  1,  2,    4,     8,     16,      32,       64, ...
  1,  4,   14,    50,    178,     634,     2258, ...
  1,  8,   50,   276,   1498,    8352,    46730, ...
  1, 16,  178,  1498,  10980,   85138,   655090, ...
  1, 32,  634,  8352,  85138,  781712,  6965108, ...
  1, 64, 2258, 46730, 655090, 6965108, 58339148, ...
		

Crossrefs

Columns (or rows) k=0-5 give: A000012, A000079, A055099, A133357, A255255, A255262.
Main diagonal gives A018803.

A133129 Number of black/white colorings of a 3 X n rectangle which have no monochromatic 2 by 2 subsquares.

Original entry on oeis.org

1, 8, 50, 322, 2066, 13262, 85126, 546410, 3507314, 22512862, 144506294, 927561722, 5953863490, 38216853518, 245307588134, 1574588362378, 10107019231634, 64875265300670, 416423472774166, 2672952594083738, 17157235452223586, 110129423550044398
Offset: 0

Views

Author

Victor S. Miller, Sep 19 2007

Keywords

Examples

			a(2) = 50 because if the middle row is not monochromatic, the top and bottom rows are unconstrained, contributing 2*4*4. if the middle row is monochromatic, the top and bottom rows can each take on only 3 values contributing 2*3*3.
		

Crossrefs

Column k=3 of A181245.

Formula

G.f.: 1+x*(8+2*x-2*x^2)/(1-6*x-3*x^2+2*x^3). - Colin Barker, Jan 04 2012

Extensions

More terms from Colin Barker, Jan 03 2012
a(0)=1 prepended and g.f. adapted by Alois P. Heinz, Feb 19 2015

A255255 Number of 2-colorings of a 4 X n rectangle such that no nontrivial subsquare has monochromatic corners.

Original entry on oeis.org

1, 16, 178, 1498, 10980, 85138, 655090, 5115398, 39914386, 312388874, 2436283602, 18994966598, 148059349634, 1154792660474, 9007078544234, 70254124462638, 547921292697778, 4273303250042966, 33327954035543034, 259932116476519958, 2027268764564330754
Offset: 0

Views

Author

Alois P. Heinz, Feb 19 2015

Keywords

Crossrefs

Column k=4 of A255256.
Cf. A133357.

Programs

  • Maple
    gf:= -(4608*x^78 +3840*x^77 +84224*x^76 -320640*x^75 +246976*x^74 -756544*x^73 -2238400*x^72 +5321120*x^71 +12808672*x^70 +54862128*x^69 -56935120*x^68 -320396192*x^67 +196696056*x^66 +580449400*x^65 -800166640*x^64 +931676252*x^63 -3217094764*x^62 -2931282696*x^61 +15075340414*x^60 -25189807228*x^59 +8940907182*x^58 +72225838335*x^57 -79785446783*x^56 +16049408070*x^55 +94923048557*x^54 -184157650742*x^53 +84396466384*x^52 +63222211250*x^51 -205358037404*x^50
    +102077559913*x^49 -54179691207*x^48 -58933050614*x^47 -72350094400*x^46 +119755954460*x^45 +391109674279*x^44 -31136120454*x^43 +7469466171*x^42 +4087734421*x^41 -259850982087*x^40 -250072129598*x^39 -106581496436*x^38 +208831935210*x^37 +402861489180*x^36 +109203162981*x^35 -275403863093*x^34 -334505242945*x^33 -114680900580*x^32 +196805363764*x^31 +294322652328*x^30 +163414286266*x^29
    +9671161820*x^28 -93783726011*x^27 -117305441726*x^26 -63470276869*x^25 -4776176481*x^24 +17768047304*x^23 +14651146288*x^22 +7623498972*x^21 +4260618627*x^20 +1317986665*x^19 -720102442*x^18 -787824686*x^17 -195158015*x^16 +30687326*x^15 +15478943*x^14 +9512482*x^13 +14257207*x^12 +7365310*x^11 -194075*x^10 -1591059*x^9 -609139*x^8 -99289*x^7 +358*x^6 +4060*x^5 +1728*x^4 +632*x^3 +117*x^2 +14*x +1) /
    (-2304*x^76 -4224*x^75 -48832*x^74 +106368*x^73 -28736*x^72 +387264*x^71 +1606752*x^70 -417728*x^69 -6732224*x^68 -32605960*x^67 -17678016*x^66 +104280356*x^65 +13666240*x^64 -287868964*x^63 +243731588*x^62 -345759930*x^61 +338343404*x^60 +2718472224*x^59 -4711903718*x^58 +5420902529*x^57 +8555023111*x^56 -23454331276*x^55 +9026831269*x^54
    +16445485090*x^53 -42633850200*x^52 +27124456832*x^51 +15867136764*x^50 -59350410523*x^49 +30378083319*x^48 +11917445228*x^47 -36411691280*x^46 +24780724314*x^45 +72006964843*x^44 +20800791816*x^43 -64959622007*x^42 -16674723587*x^41 +8311317841*x^40 -41851983658*x^39 -10878840512*x^38 +60227329766*x^37 +71646302640*x^36 +111795917*x^35 -98969183331*x^34 -102248503015*x^33 +13126172584*x^32 +108338140330*x^31
    +80553248220*x^30 -4243013616*x^29 -43486302952*x^28 -28181948095*x^27 -3688188878*x^26 +4299265271*x^25 +2263896509*x^24 +739802084*x^23 +845394966*x^22 +509931484*x^21 -127596363*x^20 -330548479*x^19 -74104054*x^18 +132481026*x^17 +79485565*x^16 +21861608*x^15 +12380793*x^14 +5359440*x^13 +161495*x^12 -1832730*x^11 -1066905*x^10 -274895*x^9 -73293*x^8 -3043*x^7 +5244*x^6 +1760*x^5 +358*x^4 +46*x^3 +29*x^2 +2*x -1):
    a:= n-> coeff(series(gf, x, n+1), x, n):
    seq(a(n), n=0..30);

Formula

G.f.: see Maple program.
Showing 1-3 of 3 results.