A055099
Expansion of g.f.: (1 + x)/(1 - 3*x - 2*x^2).
Original entry on oeis.org
1, 4, 14, 50, 178, 634, 2258, 8042, 28642, 102010, 363314, 1293962, 4608514, 16413466, 58457426, 208199210, 741512482, 2640935866, 9405832562, 33499369418, 119309773378, 424928058970, 1513403723666, 5390067288938, 19197009314146, 68371162520314, 243507506189234
Offset: 0
a(3) = 50 because among the 4^3 = 64 quaternary words of length 3 only 14 namely 003, 030, 031, 032, 033, 103, 130, 203, 230, 300, 301, 302, 303, 330 contain the subwords 03 or 30. - _Philippe Deléham_, Apr 27 2012
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, (Problem 2.4.6).
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- M. Abrate, S. Barbero, U. Cerruti, and N. Murru, Construction and composition of rooted trees via descent functions, Algebra, Volume 2013 (2013), Article ID 543913, 11 pages.
- D. Birmajer, J. B. Gil, and M. D. Weiner, On the Enumeration of Restricted Words over a Finite Alphabet, J. Int. Seq. 19 (2016) # 16.1.3 , example 17
- A. S. Fraenkel, Heap games, numeration systems and sequences, arXiv:math/9809074 [math.CO], 1998; Annals of Combinatorics, 2 (1998), 197-210.
- Shanzhen Gao and Keh-Hsun Chen, Tackling Sequences From Prudent Self-Avoiding Walks, FCS'14, The 2014 International Conference on Foundations of Computer Science.
- S. Gao and H. Niederhausen, Sequences Arising From Prudent Self-Avoiding Walks, 2010.
- Sergey Kitaev and Jeffrey Remmel, (a,b)-rectangle patterns in permutations and words, arXiv:1304.4286 [math.CO], 2013.
- Paul K. Stockmeyer, The Pascal Rhombus and the Stealth Configuration, arXiv:1504.04404 [math.CO], 2015.
- Index entries for linear recurrences with constant coefficients, signature (3,2).
-
a055099 n = a007481 (2 * n + 1) - a007481 (2 * n)
-- Reinhard Zumkeller, Oct 25 2015
-
I:=[1,4]; [n le 2 select I[n] else 3*Self(n-1) + 2*Self(n-2): n in [1..41]]; // G. C. Greubel, Jun 27 2021
-
a := proc(n) option remember; `if`(n < 2, [1, 4][n+1], (3*a(n-1) + 2*a(n-2))) end:
seq(a(n), n=0..23); # Peter Luschny, Jan 06 2019
-
max = 24; cv = ContinuedFraction[ Sqrt[2], max] // Convergents // Numerator; Series[ 1/(1 - cv.x^Range[max]), {x, 0, max}] // CoefficientList[#, x]& // Rest (* Jean-François Alcover, Jun 21 2013, after Gary W. Adamson *)
LinearRecurrence[{3, 2}, {1, 4}, 24] (* Jean-François Alcover, Sep 23 2017 *)
-
[(i*sqrt(2))^(n-1)*( i*sqrt(2)*chebyshev_U(n, -3*i/(2*sqrt(2))) + chebyshev_U(n-1, -3*i/(2*sqrt(2))) ) for n in (0..40)] # G. C. Greubel, Jun 27 2021
A133357
Number of 2-colorings of a 3 X n rectangle for which no subsquare has monochromatic corners.
Original entry on oeis.org
1, 8, 50, 276, 1498, 8352, 46730, 260204, 1447890, 8062968, 44907298, 250082756, 1392637914, 7755351712, 43188407610, 240509081468, 1339353796226, 7458635202952, 41535888495186, 231306378487028, 1288106280145770, 7173247100732400, 39946606186601514
Offset: 0
a(1) = 8, because there are no conditions.
a(2) = 50 because if the middle row is not monochromatic, the top and bottom rows are unconstrained, contributing 2*4*4. If the middle row is monochromatic, the top and bottom rows can each take on only 3 values contributing 2*3*3.
- J. Solymosi, "A Note on a Question of Erdos and Graham", Combinatorics, Probability and Computing, Volume 13, Issue 2 (March 2004) 263 - 267.
-
gf:= -(x+1)*(8*x^7-12*x^6-2*x^5-16*x^4-30*x^3-15*x^2-4*x-1)/
(24*x^8-4*x^7-46*x^6-66*x^5-74*x^4-25*x^3-7*x^2-3*x+1):
a:= n-> coeff(series(gf, x, n+1), x, n):
seq(a(n), n=0..30); # Alois P. Heinz, Feb 18 2015
A255255
Number of 2-colorings of a 4 X n rectangle such that no nontrivial subsquare has monochromatic corners.
Original entry on oeis.org
1, 16, 178, 1498, 10980, 85138, 655090, 5115398, 39914386, 312388874, 2436283602, 18994966598, 148059349634, 1154792660474, 9007078544234, 70254124462638, 547921292697778, 4273303250042966, 33327954035543034, 259932116476519958, 2027268764564330754
Offset: 0
-
gf:= -(4608*x^78 +3840*x^77 +84224*x^76 -320640*x^75 +246976*x^74 -756544*x^73 -2238400*x^72 +5321120*x^71 +12808672*x^70 +54862128*x^69 -56935120*x^68 -320396192*x^67 +196696056*x^66 +580449400*x^65 -800166640*x^64 +931676252*x^63 -3217094764*x^62 -2931282696*x^61 +15075340414*x^60 -25189807228*x^59 +8940907182*x^58 +72225838335*x^57 -79785446783*x^56 +16049408070*x^55 +94923048557*x^54 -184157650742*x^53 +84396466384*x^52 +63222211250*x^51 -205358037404*x^50
+102077559913*x^49 -54179691207*x^48 -58933050614*x^47 -72350094400*x^46 +119755954460*x^45 +391109674279*x^44 -31136120454*x^43 +7469466171*x^42 +4087734421*x^41 -259850982087*x^40 -250072129598*x^39 -106581496436*x^38 +208831935210*x^37 +402861489180*x^36 +109203162981*x^35 -275403863093*x^34 -334505242945*x^33 -114680900580*x^32 +196805363764*x^31 +294322652328*x^30 +163414286266*x^29
+9671161820*x^28 -93783726011*x^27 -117305441726*x^26 -63470276869*x^25 -4776176481*x^24 +17768047304*x^23 +14651146288*x^22 +7623498972*x^21 +4260618627*x^20 +1317986665*x^19 -720102442*x^18 -787824686*x^17 -195158015*x^16 +30687326*x^15 +15478943*x^14 +9512482*x^13 +14257207*x^12 +7365310*x^11 -194075*x^10 -1591059*x^9 -609139*x^8 -99289*x^7 +358*x^6 +4060*x^5 +1728*x^4 +632*x^3 +117*x^2 +14*x +1) /
(-2304*x^76 -4224*x^75 -48832*x^74 +106368*x^73 -28736*x^72 +387264*x^71 +1606752*x^70 -417728*x^69 -6732224*x^68 -32605960*x^67 -17678016*x^66 +104280356*x^65 +13666240*x^64 -287868964*x^63 +243731588*x^62 -345759930*x^61 +338343404*x^60 +2718472224*x^59 -4711903718*x^58 +5420902529*x^57 +8555023111*x^56 -23454331276*x^55 +9026831269*x^54
+16445485090*x^53 -42633850200*x^52 +27124456832*x^51 +15867136764*x^50 -59350410523*x^49 +30378083319*x^48 +11917445228*x^47 -36411691280*x^46 +24780724314*x^45 +72006964843*x^44 +20800791816*x^43 -64959622007*x^42 -16674723587*x^41 +8311317841*x^40 -41851983658*x^39 -10878840512*x^38 +60227329766*x^37 +71646302640*x^36 +111795917*x^35 -98969183331*x^34 -102248503015*x^33 +13126172584*x^32 +108338140330*x^31
+80553248220*x^30 -4243013616*x^29 -43486302952*x^28 -28181948095*x^27 -3688188878*x^26 +4299265271*x^25 +2263896509*x^24 +739802084*x^23 +845394966*x^22 +509931484*x^21 -127596363*x^20 -330548479*x^19 -74104054*x^18 +132481026*x^17 +79485565*x^16 +21861608*x^15 +12380793*x^14 +5359440*x^13 +161495*x^12 -1832730*x^11 -1066905*x^10 -274895*x^9 -73293*x^8 -3043*x^7 +5244*x^6 +1760*x^5 +358*x^4 +46*x^3 +29*x^2 +2*x -1):
a:= n-> coeff(series(gf, x, n+1), x, n):
seq(a(n), n=0..30);
A018803
Number of ways to color cells of an n X n square with 2 colors so that no subsquare of side > 1 has all corners same color.
Original entry on oeis.org
1, 2, 14, 276, 10980, 781712, 58339148, 3066831440, 58170992144, 313031791856, 109957124552, 5020721992, 3980056, 1140264, 232228
Offset: 0
More terms from Bacher and Eliahou paper added by
Sean A. Irvine, Feb 13 2019
A255262
Number of 2-colorings of a 5 X n rectangle such that no nontrivial subsquare has monochromatic corners.
Original entry on oeis.org
1, 32, 634, 8352, 85138, 781712, 6965108, 63676276, 573884026, 5345916472, 49611640680, 461953566404, 4330354287396, 40272872295148, 374708736274324, 3480925090005388, 32298776524667360, 300205447716571716, 2790072113514722888, 25940651276104559604, 241231567695925299556
Offset: 0
Showing 1-5 of 5 results.
Comments