cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A255256 Number A(n,k) of 2-colorings of a k X n rectangle such that no nontrivial subsquare has monochromatic corners; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 8, 14, 8, 1, 1, 16, 50, 50, 16, 1, 1, 32, 178, 276, 178, 32, 1, 1, 64, 634, 1498, 1498, 634, 64, 1, 1, 128, 2258, 8352, 10980, 8352, 2258, 128, 1, 1, 256, 8042, 46730, 85138, 85138, 46730, 8042, 256, 1, 1, 512, 28642, 260204, 655090, 781712, 655090, 260204, 28642, 512, 1
Offset: 0

Views

Author

Alois P. Heinz, Feb 19 2015

Keywords

Examples

			A(2,2) = 2^(2*2) - 2 = 14 because there are exactly two of sixteen 2-colorings of the 2 X 2 square resulting in nontrivial subsquares with monochromatic corners.
Square array A(n,k) begins:
  1,  1,    1,     1,      1,       1,        1, ...
  1,  2,    4,     8,     16,      32,       64, ...
  1,  4,   14,    50,    178,     634,     2258, ...
  1,  8,   50,   276,   1498,    8352,    46730, ...
  1, 16,  178,  1498,  10980,   85138,   655090, ...
  1, 32,  634,  8352,  85138,  781712,  6965108, ...
  1, 64, 2258, 46730, 655090, 6965108, 58339148, ...
		

Crossrefs

Columns (or rows) k=0-5 give: A000012, A000079, A055099, A133357, A255255, A255262.
Main diagonal gives A018803.

A133357 Number of 2-colorings of a 3 X n rectangle for which no subsquare has monochromatic corners.

Original entry on oeis.org

1, 8, 50, 276, 1498, 8352, 46730, 260204, 1447890, 8062968, 44907298, 250082756, 1392637914, 7755351712, 43188407610, 240509081468, 1339353796226, 7458635202952, 41535888495186, 231306378487028, 1288106280145770, 7173247100732400, 39946606186601514
Offset: 0

Views

Author

Victor S. Miller, Dec 21 2007

Keywords

Comments

Figures obtained via clever exhaustion, using Gray Codes.

Examples

			a(1) = 8, because there are no conditions.
a(2) = 50 because if the middle row is not monochromatic, the top and bottom rows are unconstrained, contributing 2*4*4.  If the middle row is monochromatic, the top and bottom rows can each take on only 3 values contributing 2*3*3.
		

References

  • J. Solymosi, "A Note on a Question of Erdos and Graham", Combinatorics, Probability and Computing, Volume 13, Issue 2 (March 2004) 263 - 267.

Crossrefs

Column k=3 of A255256.

Programs

  • Maple
    gf:= -(x+1)*(8*x^7-12*x^6-2*x^5-16*x^4-30*x^3-15*x^2-4*x-1)/
         (24*x^8-4*x^7-46*x^6-66*x^5-74*x^4-25*x^3-7*x^2-3*x+1):
    a:= n-> coeff(series(gf, x, n+1), x, n):
    seq(a(n), n=0..30);  # Alois P. Heinz, Feb 18 2015

Formula

G.f.: -(x+1)*(8*x^7-12*x^6-2*x^5-16*x^4-30*x^3-15*x^2-4*x-1) / (24*x^8-4*x^7-46*x^6-66*x^5-74*x^4-25*x^3-7*x^2-3*x+1). - Alois P. Heinz, Feb 18 2015

Extensions

a(0), a(8)-a(22) from Alois P. Heinz, Feb 18 2015
Showing 1-2 of 2 results.