A133135 Third column of the inverse of the triangle of polynomial coefficients P(0,x)=1, 2P(n,x)=(1+x)*[(1+x)^(n-1)+x^(n-1)].
1, -2, 2, -1, 1, -4, 4, 13, -13, -142, 142, 1931, -1931, -36296, 36296, 893273, -893273, -27927346, 27927346, 1081725559, -1081725559, -50861556172, 50861556172, 2854289486309, -2854289486309, -188475382997654, 188475382997654, 14467150771771043, -14467150771771043
Offset: 0
Keywords
Examples
The inverse of the triangle of coefficients starts 1; -1, 1; 1, -3/2, 1; -1, 3/2, -2, 1; 1, -5/4, 2, -5/2, 1; -1, 5/4 -1, 5/2, -3, 1; 1, -7/4, 1, 0, 3, -7/2, 1; -1, 7/4,-4, 0, 2, 7/2,-4, 1; 1, 3/8, 4,-21/2, -2, 21/4, 4,-9/2, 1; -1, -3/8,13, 21/2,-26,-21/4,10, 9/2,-5, 1; and defines the sequence in its third column. Apart from the numbers along the diagonal, the absolute values show up in pairs if read along columns. Conjectures: Starting with the third line, columns are alternatingly fractions and integers. The row sums (1, 0, 1/2, -1/2, 1/4, -1/4, 3/4, -3/4, -11/8, 11/8,..) also show up in pairs from the third row on.
Programs
-
Mathematica
max = 28; p[0, ] = 1; p[n, x_] := (1 + x)*((1 + x)^(n - 1) + x^(n - 1))/2; t = Table[ Coefficient[p[n, x], x, k], {n, 0, max + 2}, {k, 0, max + 2}]; a[n_] := Inverse[t][[All, 3]][[n + 3]]; Table[a[n], {n, 0, max}] (* Jean-François Alcover, Jul 22 2013 *)
Extensions
Edited and extended by R. J. Mathar, Aug 02 2008
Comments