cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A184751 a(n) = A184750(n)/A133151(n) unless A133151(n) = 0 in which case a(n) = 0.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 2, 1, 1, 3, 2, 1, 3, 4, 4, 3, 1, 2, 6, 1, 1, 9, 8, 1, 3, 2, 2, 3, 1, 4, 12, 1, 1, 6, 2, 1, 3, 16, 16, 9, 1, 2, 19, 1, 1, 12, 4, 19, 9, 2, 2, 3, 1, 8, 24, 1, 1, 18, 23, 1, 3, 19, 4, 3, 1, 23, 19, 1, 1, 32, 16, 1, 3, 2, 2, 27, 1, 4, 12, 1, 19, 23
Offset: 1

Views

Author

Rémi Eismann, Jan 21 2011

Keywords

Comments

a(n) is the "level" of pentagonal numbers (A000326).
The decomposition of pentagonal numbers into weight * level + gap is A000326(n) = A133151(n) * a(n) + A016777(n) if a(n) > 0.
A184750(n) = A000326(n) - A016777(n) if A000326(n) - A016777(n) > A016777(n), 0 otherwise.

Examples

			For n = 3 we have A133151(3) = 0, hence a(3) = 0.
For n = 5 we have A184750(5)/A133151(5) = 19 / 19 = 1, hence a(5) = 1.
For n = 25 we have A184750(25)/A133151(25) = 849 / 283 = 5, hence a(25) = 3.
		

Crossrefs

A184750 a(n) = largest k such that A000326(n+1) = A000326(n) + (A000326(n) mod k), or 0 if no such k exists.

Original entry on oeis.org

0, 0, 0, 0, 19, 32, 48, 67, 89, 114, 142, 173, 207, 244, 284, 327, 373, 422, 474, 529, 587, 648, 712, 779, 849, 922, 998, 1077, 1159, 1244, 1332, 1423, 1517, 1614, 1714, 1817, 1923, 2032, 2144, 2259, 2377, 2498, 2622, 2749
Offset: 1

Views

Author

Rémi Eismann, Jan 21 2011

Keywords

Comments

From the definition, a(n) = A000326(n) - A016777(n) if A000326(n) - A016777(n) > A016777(n), 0 otherwise, where A000326 are the pentagonal numbers and A016777 are the gaps between pentagonal numbers: 3n + 1.

Examples

			For n = 3 we have A000326(3) = 12, A000326(4) = 22; there is no k such that 22 - 12 = 10 = (12 mod k), hence a(3) = 0.
For n = 5 we have A000326(5) = 35, A000326(6) = 51; 19 is the largest k such that 51 - 35 = 16 = (35 mod k), hence a(5) = 19; a(5) = (75-35-2)/2 = 19.
For n = 25 we have A000326(25) = 925, A000326(26) = 1001; 849 is the largest k such that 1001 - 925 = 76 = (925 mod k), hence a(25) = 849; a(25) = (1875-175-2)/2 = 849.
		

Crossrefs

Programs

  • Maple
    A184750:=n->(3*n^2 - 7*n - 2)*signum(floor(n/5))/2; seq(A184750(n), n=1..50); # Wesley Ivan Hurt, Apr 05 2014
  • Mathematica
    Table[(3 n^2 - 7 n - 2) Sign[Floor[n/5]]/2, {n, 50}] (* Wesley Ivan Hurt, Apr 05 2014 *)
  • PARI
    concat([0,0,0,0], Vec(-x^5*(9*x^2-25*x+19)/(x-1)^3 + O(x^100))) \\ Colin Barker, Apr 05 2014

Formula

a(n) = (3n^2-7n-2)/2 for n >= 5 and a(n) = 0 for n <= 4.
a(n) = 3*a(n-1)-3*a(n-2)+a(n-3) for n>7. G.f.: x^5*(9*x^2-25*x+19) / (1-x)^3. - Colin Barker, Apr 05 2014
a(n) = A000326(n) - A016777(n), n>=5, (see a comment above). - Wolfdieter Lang, Apr 19 2014

Extensions

Edited - Wolfdieter Lang, Apr 19 2014
Showing 1-2 of 2 results.