A133204 Primes p such that the non-Pellian equation x^2-2py^2=-1 is solvable.
5, 13, 29, 37, 41, 53, 61, 101, 109, 113, 137, 149, 157, 173, 181, 197, 229, 269, 277, 293, 313, 317, 349, 373, 389, 397, 409, 421, 457, 461, 509, 521, 541, 557, 569, 613, 653, 661, 677, 701, 709, 733, 757, 761, 773, 797, 809, 821, 829, 853, 857, 877, 941
Offset: 1
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- H. von Lienen, The quadratic form x^2-2py^2, J. Number Theory 10 (1978), 10-15.
Crossrefs
Programs
-
Mathematica
fQ[n_] := Solve[x^2 + 1 == 2 n*y^2, {x, y}, Integers] != {}; Select[ Prime@ Range@ 160, fQ] (* Robert G. Wilson v, Dec 19 2013 *)
Comments