cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A133205 Fully multiplicative with a(p) = p*(p+1)/2 for prime p.

Original entry on oeis.org

1, 3, 6, 9, 15, 18, 28, 27, 36, 45, 66, 54, 91, 84, 90, 81, 153, 108, 190, 135, 168, 198, 276, 162, 225, 273, 216, 252, 435, 270, 496, 243, 396, 459, 420, 324, 703, 570, 546, 405, 861, 504, 946, 594, 540, 828, 1128, 486, 784, 675, 918, 819, 1431, 648, 990, 756
Offset: 1

Views

Author

Jonathan Vos Post, Oct 10 2007

Keywords

Comments

There are analogs with the triangular numbers replaced by some other sequence, but this was chosen because of the parity coincidences of A034953.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p*(p + 1)/2)^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 60] (* Amiram Eldar, Dec 24 2022 *)
  • PARI
    a(n)=my(f=factor(n));prod(i=1,#f[,1],binomial(f[i,1]+1,2)^f[i,2]) /* Charles R Greathouse IV, Sep 09 2010 */
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, 1 + (p^2 + p) / (2/X - p^2 - p))[n], ", ")) \\ Vaclav Kotesovec, Apr 05 2023

Formula

a((p_1)^(e_1)*(p_2)^(e_2)*...*(p_k)^(e_k)) = T(p_1)^(e_1)*T(p_2)^(e_2)*...*T(p_k)^(e_k), where T(i) = A000217(i). a(prime(i)) = A034953(i).
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 - 2/(p*(p+1)))^(-1) = 2.12007865309570462566... . - Amiram Eldar, Dec 24 2022
Dirichlet g.f.: Product_{p prime} (1 + (p^2 + p) / (2*p^s - p^2 - p)). - Vaclav Kotesovec, Apr 05 2023
a(n) = A167338(n)/A061142(n). - Vaclav Kotesovec, Jan 28 2025
Conjecture: Sum_{k=1..n} a(k) = O(n^3/log(n)). - Vaclav Kotesovec, Jan 28 2025