cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A133223 Sum of digits of primes (A007605), sorted and with duplicates removed.

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19, 20, 22, 23, 25, 26, 28, 29, 31, 32, 34, 35, 37, 38, 40, 41, 43, 44, 46, 47, 49, 50, 52, 53, 55, 56, 58, 59, 61, 62, 64, 65, 67, 68, 70, 71, 73, 74, 76, 77, 79, 80, 82, 83, 85, 86, 88, 89, 91, 92, 94, 95, 97, 98, 100, 101, 103
Offset: 1

Views

Author

Lekraj Beedassy, Dec 19 2007

Keywords

Comments

Presumably this is 3 together with numbers greater than 1 and not divisible by 3 (see A001651). - Charles R Greathouse IV, Jul 17 2013. (This is not a theorem because we do not know if, given s > 3 and not a multiple of 3, there is always a prime with digit-sum s. Cf. A067180, A067523. - N. J. A. Sloane, Nov 02 2018)
From Chai Wah Wu, Nov 04 2018: (Start)
Conjecture: for s > 10 and not a multiple of 3, there exists a prime with digit-sum s consisting only of the digits 2 and 3 (cf. A137269). This conjecture has been verified for s <= 2995.
Conjecture: for s > 18 and not a multiple of 3, there exists a prime with digit-sum s consisting only of the digits 3 and 4. This conjecture has been verified for s <= 1345.
Conjecture: for s > 90 and not a multiple of 3, there exists a prime with digit-sum s consisting only of the digits 8 and 9. This conjecture has been verified for s <= 8995.
Conjecture: for 0 < a < b < 10, gcd(a, b) = 1 and ab not a multiple of 10, if s > 90 and s is not a multiple of 3, then there exists a prime with digit-sum s consisting only of the digits a and b. (End)

Crossrefs

Extensions

Corrected by Jeremy Gardiner, Feb 09 2014