cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A133238 Dimensions of certain Lie algebra (see reference for precise definition).

Original entry on oeis.org

1, 52, 1053, 12376, 100776, 627912, 3187041, 13748020, 51949755, 175847880, 542393670, 1544927904, 4107092288, 10278624864, 24388573014, 55188666312, 119696471453, 249869263644, 503865726155, 984563860280, 1869304764600, 3456658569000, 6238533257775
Offset: 0

Views

Author

N. J. A. Sloane, Oct 15 2007

Keywords

Crossrefs

The cases a = -4/3, -1, -2/3, 0, 1, 2, 4, 6, 8 of Th. 7.1 of Landsberg and Manivel give sequences A005408, A000578, A085462, A107942, A133238 (this entry), A133239, A133240, A133241 and A030650 respectively. See also triangle in A128894.

Programs

  • Maple
    b:=binomial; t71:= proc(a,k) ((3*a+2*k+5)/(3*a+5)) * b(k+2*a+3,k)*b(k+5*a/2+3,k)*b(k+3*a+4,k)/(b(k+a/2+1,k)*b(k+a+1,k)); end; [seq(t71(1,k),k=0..30)];
  • Mathematica
    t71[a_, k_] := (3a+2k+5) / (3a+5) Binomial[k+2a+3,k] Binomial[k+5/2a+3,k] Binomial[k+3a+4,k] / (Binomial[k+a/2+1,k] Binomial[k+a+1,k]);
    Array[t71[1,#]&,30,0] (* Paolo Xausa, Jan 11 2024 *)

Formula

Empirical g.f.: (x^8+36*x^7+341*x^6+1208*x^5+1820*x^4+1208*x^3+341*x^2+36*x+1) / (x-1)^16. - Colin Barker, Jul 27 2013
Showing 1-1 of 1 results.