A133276 Triangle read by rows: row n gives the first arithmetic progression of n primes with minimal distance, cf. A033188.
2, 2, 3, 3, 5, 7, 5, 11, 17, 23, 5, 11, 17, 23, 29, 7, 37, 67, 97, 127, 157, 7, 157, 307, 457, 607, 757, 907, 199, 409, 619, 829, 1039, 1249, 1459, 1669, 199, 409, 619, 829, 1039, 1249, 1459, 1669, 1879, 199, 409, 619, 829, 1039, 1249, 1459, 1669, 1879, 2089, 60858179, 60860489, 60862799, 60865109, 60867419, 60869729, 60872039, 60874349, 60876659, 60878969, 60881279
Offset: 1
Examples
Triangle begins: 2 2 3 3 5 7 5 11 17 23 5 11 17 23 29 7 37 67 97 127 157 7 157 307 457 607 757 907 199 409 619 829 1039 1249 1459 1669 199 409 619 829 1039 1249 1459 1669 1879 199 409 619 829 1039 1249 1459 1669 1879 2089 ... Row 10 is the same as in A086786, A113470, A133277, and listed as A033168. - _M. F. Hasler_, Jan 02 2020
Links
Crossrefs
Programs
-
Maple
AP:=proc(i,d,l) [seq(i + (j-1)*d, j=1..l )]; end;
Comments