A086786
Triangle read by rows: n-th row is the smallest set of n numbers in arithmetic progression with the same prime signature.
Original entry on oeis.org
1, 2, 3, 3, 5, 7, 5, 11, 17, 23, 5, 11, 17, 23, 29, 7, 37, 67, 97, 127, 157, 481, 485, 489, 493, 497, 501, 505, 635, 707, 779, 851, 923, 995, 1067, 1139, 635, 707, 779, 851, 923, 995, 1067, 1139, 1211, 199, 409, 619, 829, 1039, 1249, 1459, 1669, 1879, 2089, 3841
Offset: 1
Triangle begins:
1
2,3
3,5,7
5,11,17,23
5,11,17,23,29
7,37,67,97,127,157
481,485,489,493,497,501,505
635,707,779,851,923,995,1067,1139
635,707,779,851,923,995,1067,1139,1211
199,409,619,829,1039,1249,1459,1669,1879,2089
...
A087310 contains the corresponding common differences,
A087308 the initial terms,
A087309 the final terms.
A133277
Triangle read by rows: row n gives the arithmetic progression of n primes with minimal final term, cf. A005115.
Original entry on oeis.org
2, 2, 3, 3, 5, 7, 5, 11, 17, 23, 5, 11, 17, 23, 29, 7, 37, 67, 97, 127, 157, 7, 157, 307, 457, 607, 757, 907, 199, 409, 619, 829, 1039, 1249, 1459, 1669, 199, 409, 619, 829, 1039, 1249, 1459, 1669, 1879, 199, 409, 619, 829, 1039, 1249, 1459, 1669, 1879, 2089, 110437, 124297, 138157, 152017, 165877, 179737, 193597, 207457, 221317, 235177, 249037
Offset: 1
Triangle begins:
2;
2, 3;
3, 5, 7;
5, 11, 17, 23;
5, 11, 17, 23, 29;
7, 37, 67, 97, 127, 157;
7, 157, 307, 457, 607, 757, 907;
199, 409, 619, 829, 1039, 1249, 1459, 1669;
199, 409, 619, 829, 1039, 1249, 1459, 1669, 1879;
199, 409, 619, 829, 1039, 1249, 1459, 1669, 1879, 2089;
...
Differs from
A133276 (from T(11,1) = a(56) on).
See also
A061558 (distance in earliest n-AP),
A088430 (same for primes),
A231017 (second term in p-AP starting with p),
A061558 (distance of n-AP starting at the smallest possible prime).
A-numbers in the Name and Crossrefs sections corrected by
Bobby Jacobs, Dec 10 2016
A113470
Triangle read by rows: n-th row is the smallest set of n numbers in arithmetic progression with the same number of divisors.
Original entry on oeis.org
1, 2, 3, 3, 5, 7, 5, 11, 17, 23, 5, 11, 17, 23, 29, 7, 37, 67, 97, 127, 157, 35, 65, 95, 125, 155, 185, 215, 635, 707, 779, 851, 923, 995, 1067, 1139, 635, 707, 779, 851, 923, 995, 1067, 1139, 1211, 199, 409, 619, 829, 1039, 1249, 1459, 1669, 1879, 2089, 3841, 3973
Offset: 1
From _M. F. Hasler_, Jan 02 2020: (Start)
The triangle starts
n | row n
---+------------
1 | 1,
2 | 2, 3,
3 | 3, 5, 7,
4 | 5, 11, 17, 23,
5 | 5, 11, 17, 23, 29,
6 | 7, 37, 67, 97, 127, 157,
7 | 35, 65, 95, 125, 155, 185, 215,
8 | 635, 707, 779, 851, 923, 995, 1067, 1139,
9 | 635, 707, 779, 851, 923, 995, 1067, 1139, 1211,
10 | 199, 409, 619, 829, 1039, 1249, 1459, 1669, 1879, 2089,
11 | 3841, 3973, ...
Most rows so far consist of primes with 2 divisors, rows 7, 8, 9 and 11 have squarefree semiprimes with 4 divisors.
Row 10 is A033168; also row 10 of A086786, A133276 and A133277. (End)
A033168
Longest arithmetic progression of primes with difference 210 and minimal initial term.
Original entry on oeis.org
199, 409, 619, 829, 1039, 1249, 1459, 1669, 1879, 2089
Offset: 0
- Paul Glendinning, Math in Minutes: 200 Key Concepts Explained in an Instant. New York, London: Quercus (2013): pp. 316-317.
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 143.
-
199 + 210*Range[0, 9] (* Paolo Xausa, Sep 14 2024 *)
-
forprime(p=1,,for(i=1,9,isprime(p+i*210)||next(2)); return([p+d|d<-[0..9]*210])) \\ M. F. Hasler, Jan 02 2020
Showing 1-4 of 4 results.
Comments