A005115
Let i, i+d, i+2d, ..., i+(n-1)d be an n-term arithmetic progression of primes; choose the one which minimizes the last term; then a(n) = last term i+(n-1)d.
Original entry on oeis.org
2, 3, 7, 23, 29, 157, 907, 1669, 1879, 2089, 249037, 262897, 725663, 36850999, 173471351, 198793279, 4827507229, 17010526363, 83547839407, 572945039351, 6269243827111
Offset: 1
n, AP, last term
1 2 2
2 2+j 3
3 3+2j 7
4 5+6j 23
5 5+6j 29
6 7+30j 157
7 7+150j 907
8 199+210j 1669
9 199+210j 1879
10 199+210j 2089
11 110437+13860j 249037
12 110437+13860j 262897
..........................
a(11)=249037 since 110437,124297,...,235177,249037 is an arithmetic progression of 11 primes ending with 249037 and it is the least number with this property.
- R. K. Guy, Unsolved Problems in Number Theory, A5.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Jens Kruse Andersen, Primes in Arithmetic Progression Records [May have candidates for later terms in this sequence.]
- Thomas Bloom, Problem 200 and Problem 215, Erdős Problems.
- Harvey Dubner and Harry Nelson, Seven consecutive primes in arithmetic progression, Math. Comp., 66 (1997) 1743-1749. MR 98a:11122.
- Ben Green and Terence Tao, The primes contain arbitrarily long arithmetic progressions, Annals of Mathematics 167 (2008), pp. 481-547. arXiv:math/0404188 [math.NT], 2004-2007.
- Ben Green and Terence Tao, A bound for progressions of length k in the primes
- Andrew Granville, Prime number patterns, American Mathematical Monthly 115 (2008), pp. 279-296.
- Paul A. Pritchard, Andrew Moran and Anthony Thyssen, Twenty-two primes in arithmetic progression, Math. Comp. 64 (1995), no. 211, 1337-1339.
- Terence Tao, Erdős problem database, see no. 200, 215.
- Index entries for sequences related to primes in arithmetic progressions
For the associated gaps, see
A093364. For the initial terms, see
A113827. For the arithmetic progressions, see
A133277.
-
(* This program will generate the 4 to 12 terms to use a[n_] to generate term 13 or higher, it will have a prolonged run time. *) a[n_] := Module[{i, p, found, j, df, k}, i = 1; While[i++; p = Prime[i]; found = 0; j = 0; While[j++; df = 6*j; (p > ((n - 1)*df)) && (found == 0), found = 1; Do[If[! PrimeQ[p - k*df], found = 0], {k, 1, n - 1}]]; found == 0]; p]; Table[a[i], {i, 4, 12}]
a(18)-a(21) from Granville's paper, Jan 26 2006
A086786
Triangle read by rows: n-th row is the smallest set of n numbers in arithmetic progression with the same prime signature.
Original entry on oeis.org
1, 2, 3, 3, 5, 7, 5, 11, 17, 23, 5, 11, 17, 23, 29, 7, 37, 67, 97, 127, 157, 481, 485, 489, 493, 497, 501, 505, 635, 707, 779, 851, 923, 995, 1067, 1139, 635, 707, 779, 851, 923, 995, 1067, 1139, 1211, 199, 409, 619, 829, 1039, 1249, 1459, 1669, 1879, 2089, 3841
Offset: 1
Triangle begins:
1
2,3
3,5,7
5,11,17,23
5,11,17,23,29
7,37,67,97,127,157
481,485,489,493,497,501,505
635,707,779,851,923,995,1067,1139
635,707,779,851,923,995,1067,1139,1211
199,409,619,829,1039,1249,1459,1669,1879,2089
...
A087310 contains the corresponding common differences,
A087308 the initial terms,
A087309 the final terms.
A113470
Triangle read by rows: n-th row is the smallest set of n numbers in arithmetic progression with the same number of divisors.
Original entry on oeis.org
1, 2, 3, 3, 5, 7, 5, 11, 17, 23, 5, 11, 17, 23, 29, 7, 37, 67, 97, 127, 157, 35, 65, 95, 125, 155, 185, 215, 635, 707, 779, 851, 923, 995, 1067, 1139, 635, 707, 779, 851, 923, 995, 1067, 1139, 1211, 199, 409, 619, 829, 1039, 1249, 1459, 1669, 1879, 2089, 3841, 3973
Offset: 1
From _M. F. Hasler_, Jan 02 2020: (Start)
The triangle starts
n | row n
---+------------
1 | 1,
2 | 2, 3,
3 | 3, 5, 7,
4 | 5, 11, 17, 23,
5 | 5, 11, 17, 23, 29,
6 | 7, 37, 67, 97, 127, 157,
7 | 35, 65, 95, 125, 155, 185, 215,
8 | 635, 707, 779, 851, 923, 995, 1067, 1139,
9 | 635, 707, 779, 851, 923, 995, 1067, 1139, 1211,
10 | 199, 409, 619, 829, 1039, 1249, 1459, 1669, 1879, 2089,
11 | 3841, 3973, ...
Most rows so far consist of primes with 2 divisors, rows 7, 8, 9 and 11 have squarefree semiprimes with 4 divisors.
Row 10 is A033168; also row 10 of A086786, A133276 and A133277. (End)
A133276
Triangle read by rows: row n gives the first arithmetic progression of n primes with minimal distance, cf. A033188.
Original entry on oeis.org
2, 2, 3, 3, 5, 7, 5, 11, 17, 23, 5, 11, 17, 23, 29, 7, 37, 67, 97, 127, 157, 7, 157, 307, 457, 607, 757, 907, 199, 409, 619, 829, 1039, 1249, 1459, 1669, 199, 409, 619, 829, 1039, 1249, 1459, 1669, 1879, 199, 409, 619, 829, 1039, 1249, 1459, 1669, 1879, 2089, 60858179, 60860489, 60862799, 60865109, 60867419, 60869729, 60872039, 60874349, 60876659, 60878969, 60881279
Offset: 1
Triangle begins:
2
2 3
3 5 7
5 11 17 23
5 11 17 23 29
7 37 67 97 127 157
7 157 307 457 607 757 907
199 409 619 829 1039 1249 1459 1669
199 409 619 829 1039 1249 1459 1669 1879
199 409 619 829 1039 1249 1459 1669 1879 2089
...
Row 10 is the same as in A086786, A113470, A133277, and listed as A033168. - _M. F. Hasler_, Jan 02 2020
Different from
A133277 (from T(11,1) = a(56) on).
A279021
Triangle read by rows, giving the arithmetic progressions of prime-indexed primes in A278735.
Original entry on oeis.org
3, 3, 5, 5, 11, 17, 353, 431, 509, 587, 13297, 21937, 30577, 39217, 47857, 1561423, 2716423, 3871423, 5026423, 6181423, 7336423, 291461857, 373881397, 456300937, 538720477, 621140017, 703559557, 785979097
Offset: 1
a(7) = 353, a(8) = 431, a(9) = 509, and a(10) = 587 because 353 = prime(prime(20)), 431 = prime(prime(23)), 509 = prime(prime(25)), 587 = prime(prime(28)), and 431-353 = 509-431 = 587-509 = 78.
The triangle begins:
3;
3, 5;
5, 11, 17;
353, 431, 509, 587;
13297, 21937, 30577, 39217, 47857;
1561423, 2716423, 3871423, 5026423, 6181423, 7336423;
...
A033168
Longest arithmetic progression of primes with difference 210 and minimal initial term.
Original entry on oeis.org
199, 409, 619, 829, 1039, 1249, 1459, 1669, 1879, 2089
Offset: 0
- Paul Glendinning, Math in Minutes: 200 Key Concepts Explained in an Instant. New York, London: Quercus (2013): pp. 316-317.
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 143.
-
199 + 210*Range[0, 9] (* Paolo Xausa, Sep 14 2024 *)
-
forprime(p=1,,for(i=1,9,isprime(p+i*210)||next(2)); return([p+d|d<-[0..9]*210])) \\ M. F. Hasler, Jan 02 2020
A354485
Triangle read by rows: row n gives the arithmetic progression of exactly n primes with minimal final term, cf. A354376.
Original entry on oeis.org
2, 2, 3, 3, 5, 7, 7, 19, 31, 43, 5, 11, 17, 23, 29, 7, 37, 67, 97, 127, 157, 7, 157, 307, 457, 607, 757, 907, 881, 1091, 1301, 1511, 1721, 1931, 2141, 2351, 3499, 3709, 3919, 4129, 4339, 4549, 4759, 4969, 5179, 199, 409, 619, 829, 1039, 1249, 1459, 1669, 1879, 2089
Offset: 1
Triangle begins:
2;
2, 3;
3, 5, 7;
7, 19, 31, 43;
5, 11, 17, 23, 29;
7, 37, 67, 97, 127, 157;
7, 157, 307, 457, 607, 757, 907;
881, 1091, 1301, 1511, 1721, 1931, 2141, 2351;
...
- Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section A5, Arithmetic progressions of primes, pp. 25-28.
Showing 1-7 of 7 results.
Comments