cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Manuel Valdivia

Manuel Valdivia's wiki page.

Manuel Valdivia has authored 29 sequences. Here are the ten most recent ones:

A187771 Numbers whose sum of divisors is the cube of the sum of its prime divisors.

Original entry on oeis.org

245180, 612408, 639198, 1698862, 1721182, 5154168, 7824284, 15817596, 20441848, 25969788, 27688078, 28404862, 35860609, 67149432, 77378782, 91397838, 96462862, 179302264, 191550135, 289772221, 306901244, 311657084, 392802179, 441839706, 572673855, 652117774, 988918364
Offset: 1

Author

Manuel Valdivia, Jan 04 2013

Keywords

Comments

This sequence and A187824 and A187761 are winners in the contest held at the 2013 AMS/MAA Joint Mathematics Meetings. - T. D. Noe, Jan 14 2013
The identity sigma(k) = (sopf(k))^m only occurs for m = 3 (this sequence) in the given range, however it is likely that it also occurs for other powers m in higher numbers.
The smallest k such that sigma(k) = sopf(k)^m, for m=4,5,6 are 1056331752 (A221262), 213556659624 (A221263) and 45770980141656, respectively. - Giovanni Resta, Jan 07 2013
Prime divisors are taken without multiplicity. - Harvey P. Dale, Dec 17 2016

Examples

			a(13) = 35860609 = 41 * 71 * 97 * 127, then sigma(35860609) = 37933056 = (41 + 71 + 97 + 127)^3.
		

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 38.

Crossrefs

Cf. A221262 (sigma(k)=sopf(k)^4), A221263 (sigma(k)=sopf(k)^5).

Programs

  • Mathematica
    d[n_]:= If[Plus@@Divisors[n]-Power[Plus@@Select[Divisors[n], PrimeQ], 3]==0, n]; Select[Range[2,10^9], #==d[#]&]
    Select[Range[2, 10^9],DivisorSigma[1,#]==Total[FactorInteger[#][[All, 1]]]^3&] (* Harvey P. Dale, Dec 17 2016 *)
  • PARI
    is(n)=my(f=factor(n));sum(i=1,#f~,f[i,1])^3==sigma(n) \\ Charles R Greathouse IV, Jun 29 2013

Formula

a(n) = k if sigma(k) = (sopf(k))^3, where sigma(k) = A000203(k) and sopf(k) = A008472(k).

A182292 Smallest odd number k such that is equal to the sum of its proper divisors greater than k^(1/n), or 0 if none exist.

Original entry on oeis.org

34155, 407715, 8415
Offset: 2

Author

Manuel Valdivia, Apr 24 2012

Keywords

Comments

a(8) = 159030135. There is no n > 4 for which a(n) is smaller unless a(n) = 0. - Charles R Greathouse IV, Apr 25 2012
Other than a(2) to a(4) and a(8), there is no solution < 2*10^10 for a(n) up to a(1000). - Donovan Johnson, Aug 23 2012
From Alexander Violette, Feb 29 2024: (Start)
a(7) <= 7650499534755.
a(14) <= 221753170660847595. (End)

Examples

			The sum proper divisors of 407715 greater than 407715^(1/3) is 77 + 105 + 165 + 231 + 353 + 385 + 1059 + 1155 + 1765 + 2471 + 3883 + 5295 + 7413 + 11649 + 12355 + 19415 + 27181 + 37065 + 58245 + 81543 + 135905 = 407715.
		

Crossrefs

See A182147 for more details for 34155.

Programs

  • Mathematica
    t={}; d[n_]:= Select[Drop[Divisors[n],-1], #1>n^(1/p)&]; Do[s=Select[Range[1,5*10^5,2], #==Plus@@d[#]&];
      AppendTo[t,s], {p,2,4}]; Flatten[t]
  • PARI
    a(n)=my(t,k=8413);while(k+=2,if(sigma(k,-1)>2,if(ispower(k,n,&t),,t=k^(1/n)\1);if(sumdiv(k,d,if(d>t,d))==2*k,return(k)))) \\ Charles R Greathouse IV, Apr 25 2012

A182154 Smallest k >= 2 such that k^(2^n)+1 is the lesser member of a twin prime pair.

Original entry on oeis.org

2, 2, 2, 4, 2, 49592, 7132, 532, 333482, 2226686, 3543554, 23379038, 1249625230, 188489906
Offset: 0

Author

Manuel Valdivia, Apr 15 2012

Keywords

Comments

These lesser of twin prime pairs are also generalized Fermat primes, (not possible for greater of twin prime pairs, except for 5).
When extending this sequence, it is useful if the primes b^(2^n)+1 are known in advance (Gallot link). - Jeppe Stig Nielsen, Sep 25 2019
For later terms, the bigger twin is only a probable prime, not a proven prime. - Jeppe Stig Nielsen, Nov 24 2022

Examples

			2^(2^4)+1 = 65537 = A001359(861), then a(4) = 2.
		

Crossrefs

Programs

  • Mathematica
    Table[k=2; While[!PrimeQ[k^(2^n)+1]||!PrimeQ[k^(2^n)+3],k++]; k,{n,0,7}]

Extensions

a(8)-a(10) from Jeppe Stig Nielsen, Sep 25 2019
Name edited by Felix Fröhlich, Sep 25 2019
a(11)-a(13) from Jeppe Stig Nielsen, Nov 24 2022

A182065 Smallest average of twin prime pairs s such that s^(2^n)+1 is prime.

Original entry on oeis.org

4, 4, 4, 198, 30, 102, 3000, 7332, 4482, 187218, 150, 114690, 713310, 1943532, 3467622, 4470420, 23045178, 12529818
Offset: 1

Author

Manuel Valdivia, Apr 09 2012

Keywords

Comments

The averages of this sequence are base values in generalized Fermat primes.

Examples

			198^(2^4)+1 = 5580113648647376991977566450378407937 is prime.
		

Crossrefs

Programs

  • Mathematica
    t=Select[Table[Prime[n]+1,{n,10^5}],PrimeQ[#1+1]&]; s:=t[[m]]; Table[m=1; While[!PrimeQ[s^(2^n)+1],m++]; s,{n,1,9}](* Last five terms obtained by intersection with Yves Gallot records.*)

Formula

a(n) = (A014574(k))^(2^n)+1, for k = 1, 1, 1, 15, 5, 9, 82, 166, 117, 2055, 12, 1366, 6162, 14522, ...

Extensions

a(15)-a(18) from Jeppe Stig Nielsen, Sep 14 2022

A185145 Smallest average of twin prime pairs s such that n*s is also average of twin prime pairs.

Original entry on oeis.org

4, 6, 4, 18, 6, 12, 6, 30, 12, 6, 18, 6, 150, 30, 4, 12, 6, 4, 12, 12, 42, 30, 6, 18, 6, 12, 4, 270, 12, 6, 42, 6, 6, 30, 12, 12, 180, 6, 60, 6, 30, 150, 30, 30, 4, 18, 6, 4, 18, 12, 42, 6, 150, 30, 12, 60, 4, 6, 18, 4, 462, 180, 1230, 18, 30, 108, 60, 180, 12
Offset: 1

Author

Manuel Valdivia, Mar 12 2012

Keywords

Comments

Probably for all n>1 and also for all average s there are at least an average n*s. Note that this is equivalent to the Twin Prime Conjecture. Verified n to 10^7. First consecutive averages: 4 to 34260.

Examples

			A014574(12) = 150, then 13*150 = 1950 = A014574(60).
		

Crossrefs

Programs

  • Mathematica
    t=Select[Table[Prime[n] + 1, {n, 10^4}], PrimeQ[#1 + 1] & ]; Table[s:=t[[m]]; m=1; While[!PrimeQ[n*s-1] || !PrimeQ[n*s+1], m++]; s, {n,1,100}]

Formula

a(n) = A014574(j) if n*A014574(j) = A014574(k).

A205668 Prime numbers that cannot be expressed as the sum of two lesser primes of twin prime pairs + 1 or two greater primes of twin prime pairs - 1.

Original entry on oeis.org

2, 3, 5, 97, 401, 787, 907, 1117
Offset: 1

Author

Manuel Valdivia, Jan 30 2012

Keywords

Comments

The occurrence of a pair of twin primes in the sequence would be a counterexample to the conjecture in A134143.
There are probably no more terms. As in Goldbach's conjecture, the number of summands increases rapidly. - Charles R Greathouse IV, Jan 31 2012

Examples

			97 is here because neither 96 or 98 is the sum of two primes from the set {2, 3, 5, 7, 11, 13, 17, 19, 29, 31, 41, 43, 59, 61, 71, 73}, which are the twin primes less than 100. - _T. D. Noe_, Feb 12 2012
		

Crossrefs

Programs

  • Mathematica
    k=Insert[Select[Prime[Range[2,10^4]], PrimeQ[#-2]||PrimeQ[#+2]&], 5, 3]; u=Length@k/2; Complement[Prime[Range[4,10^4]], Select[Flatten[Join[Table[k[[2n-1]] + k[[2m-1]] + 1,{n,u}, {m,n}], Table[k[[2n]] + k[[2m]] - 1,{n,u}, {m,n}]]], PrimeQ]]
  • PARI
    lower=List();p=2;forprime(q=3,1e8,if(q-p==2,listput(lower,p));p=q)
    isk(n)=for(i=1,#lower,if(setsearch(lower,n-lower[i]),return(lower[i]));if(2*lower[i]>n,return(0)));error("ran out")
    is(n)=!isk(n-1)&&!isk(n-3) \\ Charles R Greathouse IV, Jan 31 2012

Formula

A000040(n) != A001359(j) + A001359(k) + 1 and A000040(n) != A006512(j) + A006512(k) - 1, with n>3 and j<=k.

A200721 Product of two nonconsecutive primes p and q that divides the sum of primes between p and q, exclusively.

Original entry on oeis.org

26, 1133, 20309, 51159, 3246905, 28673661, 5201685791
Offset: 1

Author

Manuel Valdivia, Nov 21 2011

Keywords

Comments

Prime p is approximately q/((2*log(q)-1)*k), for k = 1, 1, 3, 307, 5041, 102378,..(quotients).
a(8) > 2*10^10. 3235398421447 is also a term. - Donovan Johnson, Nov 23 2011

Examples

			51159 = 3*17053, (5+ ... +17047)/51159 = 307.
		

Crossrefs

Programs

  • Mathematica
    ss[n_] := Module[{f = Transpose[FactorInteger[n]], p, q, s}, If[f[[2]] == {1, 1}, {p, q} = PrimePi[f[[1]]]; s = Total[Table[Prime[i], {i, p + 1, q - 1}]]; s != 0 && Mod[s, n] == 0, False]]; Select[Range[2, 21000], ss] (* T. D. Noe, Nov 21 2011 *)

Extensions

a(7) from Donovan Johnson, Nov 23 2011

A186129 Numbers that can be partitioned into four parts s, t, u, v such that s+k = t-k = u*k = v/k for some k > 1.

Original entry on oeis.org

18, 27, 32, 36, 45, 48, 50, 54, 63, 64, 72, 75, 80, 81, 90, 96, 98, 99, 100, 108, 112, 117, 125, 126, 128, 135, 144, 147, 150, 153, 160, 162, 171, 175, 176, 180, 189, 192, 196, 198, 200, 207, 208, 216, 224, 225, 234, 240, 242, 243, 245, 250, 252, 256, 261
Offset: 1

Author

Manuel Valdivia, Feb 13 2011

Keywords

Comments

Equivalently, solutions n to a*(b+1)^2 = b*n with a > b >= 2.
The general rule to obtain such a partition is to start with any number b > 1 and one of its multiples a = k*b (k > 1 and a < n) and let s = a-b, t = a+b, u = a/b and v = a*b.
Sequence appears to be a subsequence of A013929, of A046790, and of A072903.

Examples

			18 = 2+6+2+8; for k=2 we have 2+2 = 6-2 = 2*2 = 8/2 = 4, hence 18 is a term.
45 = 8+12+5+20; for k=2 we have 8+2 = 12-2 = 5*2 = 20/2 = 10, hence 45 is a term.
		

References

  • José Estalella, Ciencia Recreativa. Gustavo Gili - Editor. Barcelona, 1918, pp. 5-6.

Crossrefs

Programs

  • Magma
    [ n: n in [1..300] | exists{ b: b in [2..n] | exists{ a: a in [b+1..n div 4] | n*b eq a*(b+1)^2 } } ]; // Klaus Brockhaus, Feb 15 2011

A175906 Numbers n of the form 2^(A000043-1)*A046528 such that sigma(n) is a perfect number.

Original entry on oeis.org

12, 10924032, 16125952, 3757637632, 45091651584, 66563866624, 727145809044307968, 1152771972099211264, 845044701535107443245558061611352064
Offset: 1

Author

Manuel Valdivia, Oct 12 2010

Keywords

Comments

sigma(sigma(A046528(2,12,13,18,21,22,56,57,175,176,177,..))) is Mersenne prime.

Examples

			45091651584=2^18*3*7*8191, sigma(45091651584)=137438691328 is perfect number.
		

Formula

a(n)= 2^( A000043(2,5,5,6,7,7,8,8,9,9,9,..)-1)*A046528(2,12,13,18,21,22,56,57,175,176,177,..).

A175410 a(n) = (b(m)-1)*b(m) = Sum_{n=b(m)+1,...,c(m)}n, b=A046174, c=A046175, m=n+1.

Original entry on oeis.org

132, 27060, 5269320, 1022496552, 198362899020, 38481433358940, 7465200453136272, 1448210416843244880, 280945355811546307860, 54501950819034511436292, 10573097513564898455783640
Offset: 1

Author

Manuel Valdivia, May 05 2010

Keywords

Comments

Solution to (b-1)*b = (c^2+2bc+c)/2.

Examples

			A046174(2) = 12, then 11*12 = 13+14+15+16+17+18+19+20 = 132, is a term. A046174(3) = 165, then 164*165 = 166+167+,....,+285 = 27060, is a term.
		

Crossrefs

Programs

  • Mathematica
    lst={};k=1;j=0;Do[b=14*k-j-2;AppendTo[lst,(b-1)*b];j=k;k=b,{n,1,16}];lst