A187771 Numbers whose sum of divisors is the cube of the sum of its prime divisors.
245180, 612408, 639198, 1698862, 1721182, 5154168, 7824284, 15817596, 20441848, 25969788, 27688078, 28404862, 35860609, 67149432, 77378782, 91397838, 96462862, 179302264, 191550135, 289772221, 306901244, 311657084, 392802179, 441839706, 572673855, 652117774, 988918364
Offset: 1
Examples
a(13) = 35860609 = 41 * 71 * 97 * 127, then sigma(35860609) = 37933056 = (41 + 71 + 97 + 127)^3.
References
- T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 38.
Links
- Donovan Johnson and Robert Gerbicz, Table of n, a(n) for n = 1..1105 (first 100 terms from _Donovan Johnson_)
- W. Sierpinski, Number Of Divisors And Their Sum, Elementary theory of numbers, Warszawa, 1964.
Crossrefs
Programs
-
Mathematica
d[n_]:= If[Plus@@Divisors[n]-Power[Plus@@Select[Divisors[n], PrimeQ], 3]==0, n]; Select[Range[2,10^9], #==d[#]&] Select[Range[2, 10^9],DivisorSigma[1,#]==Total[FactorInteger[#][[All, 1]]]^3&] (* Harvey P. Dale, Dec 17 2016 *)
-
PARI
is(n)=my(f=factor(n));sum(i=1,#f~,f[i,1])^3==sigma(n) \\ Charles R Greathouse IV, Jun 29 2013
Comments